ﻻ يوجد ملخص باللغة العربية
In medical research, continuous markers are widely employed in diagnostic tests to distinguish diseased and non-diseased subjects. The accuracy of such diagnostic tests is commonly assessed using the receiver operating characteristic (ROC) curve. To summarize an ROC curve and determine its optimal cut-point, the Youden index is popularly used. In literature, estimation of the Youden index has been widely studied via various statistical modeling strategies on the conditional density. This paper proposes a new model-free estimation method, which directly estimates the covariate-adjusted cut-point without estimating the conditional density. Consequently, covariate-adjusted Youden index can be estimated based on the estimated cutpoint. The proposed method formulates the estimation problem in a large margin classification framework, which allows flexible modeling of the covariate-adjusted Youden index through kernel machines. The advantage of the proposed method is demonstrated in a variety of simulated experiments as well as a real application to Pima Indians diabetes study.
Datasets from field experiments with covariate-adaptive randomizations (CARs) usually contain extra baseline covariates in addition to the strata indicators. We propose to incorporate these extra covariates via auxiliary regressions in the estimation
The Youden index is a popular summary statistic for receiver operating characteristic curve. It gives the optimal cutoff point of a biomarker to distinguish the diseased and healthy individuals. In this paper, we propose to model the distributions of
Differences between biological networks corresponding to disease conditions can help delineate the underlying disease mechanisms. Existing methods for differential network analysis do not account for dependence of networks on covariates. As a result,
Two-stage least squares (TSLS) estimators and variants thereof are widely used to infer the effect of an exposure on an outcome using instrumental variables (IVs). They belong to a wider class of two-stage IV estimators, which are based on fitting a
Robust estimation and variable selection procedure are developed for the extended t-process regression model with functional data. Statistical properties such as consistency of estimators and predictions are obtained. Numerical studies show that the proposed method performs well.