ترغب بنشر مسار تعليمي؟ اضغط هنا

A robust estimation for the extended t-process regression model

98   0   0.0 ( 0 )
 نشر من قبل Kai Li
 تاريخ النشر 2018
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Robust estimation and variable selection procedure are developed for the extended t-process regression model with functional data. Statistical properties such as consistency of estimators and predictions are obtained. Numerical studies show that the proposed method performs well.



قيم البحث

اقرأ أيضاً

Gaussian process regression (GPR) model has been widely used to fit data when the regression function is unknown and its nice properties have been well established. In this article, we introduce an extended t-process regression (eTPR) model, which gi ves a robust best linear unbiased predictor (BLUP). Owing to its succinct construction, it inherits many attractive properties from the GPR model, such as having closed forms of marginal and predictive distributions to give an explicit form for robust BLUP procedures, and easy to cope with large dimensional covariates with an efficient implementation by slightly modifying existing BLUP procedures. Properties of the robust BLUP are studied. Simulation studies and real data applications show that the eTPR model gives a robust fit in the presence of outliers in both input and output spaces and has a good performance in prediction, compared with the GPR and locally weighted scatterplot smoothing (LOESS) methods.
This paper presents a new approach to a robust Gaussian process (GP) regression. Most existing approaches replace an outlier-prone Gaussian likelihood with a non-Gaussian likelihood induced from a heavy tail distribution, such as the Laplace distribu tion and Student-t distribution. However, the use of a non-Gaussian likelihood would incur the need for a computationally expensive Bayesian approximate computation in the posterior inferences. The proposed approach models an outlier as a noisy and biased observation of an unknown regression function, and accordingly, the likelihood contains bias terms to explain the degree of deviations from the regression function. We entail how the biases can be estimated accurately with other hyperparameters by a regularized maximum likelihood estimation. Conditioned on the bias estimates, the robust GP regression can be reduced to a standard GP regression problem with analytical forms of the predictive mean and variance estimates. Therefore, the proposed approach is simple and very computationally attractive. It also gives a very robust and accurate GP estimate for many tested scenarios. For the numerical evaluation, we perform a comprehensive simulation study to evaluate the proposed approach with the comparison to the existing robust GP approaches under various simulated scenarios of different outlier proportions and different noise levels. The approach is applied to data from two measurement systems, where the predictors are based on robust environmental parameter measurements and the response variables utilize more complex chemical sensing methods that contain a certain percentage of outliers. The utility of the measurement systems and value of the environmental data are improved through the computationally efficient GP regression and bias model.
Robust estimation approaches are of fundamental importance for statistical modelling. To reduce susceptibility to outliers, we propose a robust estimation procedure with t-process under functional ANOVA model. Besides common mean structure of the stu died subjects, their personal characters are also informative, especially for prediction. We develop a prediction method to predict the individual effect. Statistical properties, such as robustness and information consistency, are studied. Numerical studies including simulation and real data examples show that the proposed method performs well.
In recent years, much of the focus in monitoring child mortality has been on assessing changes in the under-five mortality rate (U5MR). However, as the U5MR decreases, the share of neonatal deaths (within the first month) tends to increase, warrantin g increased efforts in monitoring this indicator in addition to the U5MR. A Bayesian splines regression model is presented for estimating neonatal mortality rates (NMR) for all countries. In the model, the relationship between NMR and U5MR is assessed and used to inform estimates, and spline regression models are used to capture country-specific trends. As such, the resulting NMR estimates incorporate trends in overall child mortality while also capturing data-driven trends. The model is fitted to 195 countries using the database from the United Nations Interagency Group for Child Mortality Estimation, producing estimates from 1990, or earlier if data are available, until 2015. The results suggest that, above a U5MR of 34 deaths per 1000 live births, at the global level, a 1 per cent increase in the U5MR leads to a 0.6 per cent decrease in the ratio of NMR to U5MR. Below a U5MR of 34 deaths per 1000 live births, the proportion of deaths under-five that are neonatal is constant at around 54 per cent. However, the relationship between U5MR and NMR varies across countries. The model has now been adopted by the United Nations Inter-agency Group for Child Mortality Estimation.
We present a model for generating probabilistic forecasts by combining kernel density estimation (KDE) and quantile regression techniques, as part of the probabilistic load forecasting track of the Global Energy Forecasting Competition 2014. The KDE method is initially implemented with a time-decay parameter. We later improve this method by conditioning on the temperature or the period of the week variables to provide more accurate forecasts. Secondly, we develop a simple but effective quantile regression forecast. The novel aspects of our methodology are two-fold. First, we introduce symmetry into the time-decay parameter of the kernel density estimation based forecast. Secondly we combine three probabilistic forecasts with different weights for different periods of the month.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا