ترغب بنشر مسار تعليمي؟ اضغط هنا

Suppression of X-rays from radiative shocks by their thin-shell instability

90   0   0.0 ( 0 )
 نشر من قبل Nathaniel Kee
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine X-rays from radiatively cooled shocks, focusing on how their thin-shell instability reduces X-ray emission. For 2D simulations of collision between equal expanding winds, we carry out a parameter study of such instability as a function of the ratio of radiative vs. adiabatic-expansion cooling lengths. In the adiabatic regime, the extended cooling layer suppresses instability, leading to planar shock compression with X-ray luminosity that follows closely the expected (Lx ~ M^2) quadratic scaling with mass-loss rate M . In the strongly radiative limit, the X-ray emission now follows an expected linear scaling with mass loss (Lx ~ M), but the instability deforms the shock compression into extended shear layers with oblique shocks along fingers of cooled, dense material. The spatial dispersion of shock thermalization limits strong X-ray emission to the tips and troughs of the fingers, and so reduces the X-ray emission (here by about a factor 1/50) below what is expected from analytic radiative-shock models without unstable structure. Between these two limits, X-ray emission can switch between a high-state associated with extended shock compression, and a low-state characterized by extensive shear. Further study is needed to clarify the origin of this shear mixing reduction factor in X-ray emission, and its dependence on parameters like the shock Mach number.



قيم البحث

اقرأ أيضاً

X-ray satellites since Einstein have empirically established that the X-ray luminosity from single O-stars scales linearly with bolometric luminosity, Lx ~ 10^{-7} Lbol. But straightforward forms of the most favored model, in which X-rays arise from instability-generated shocks embedded in the stellar wind, predict a steeper scaling, either with mass loss rate Lx ~ Mdot ~ Lbol^{1.7} if the shocks are radiative, or with Lx ~ Mdot^{2} ~ Lbol^{3.4} if they are adiabatic. This paper presents a generalized formalism that bridges these radiative vs. adiabatic limits in terms of the ratio of the shock cooling length to the local radius. Noting that the thin-shell instability of radiative shocks should lead to extensive mixing of hot and cool material, we propose that the associated softening and weakening of the X-ray emission can be parametrized as scaling with the cooling length ratio raised to a power m$, the mixing exponent. For physically reasonable values m ~= 0.4, this leads to an X-ray luminosity Lx ~ Mdot^{0.6} ~ Lbol that matches the empirical scaling. To fit observed X-ray line profiles, we find such radiative-shock-mixing models require the number of shocks to drop sharply above the initial shock onset radius. This in turn implies that the X-ray luminosity should saturate and even decrease for optically thick winds with very high mass-loss rates. In the opposite limit of adiabatic shocks in low-density winds (e.g., from B-stars), the X-ray luminosity should drop steeply with Mdot^2. Future numerical simulation studies will be needed to test the general thin-shell mixing ansatz for X-ray emission.
The radiatively driven wind of the primary star in wind-fed X-ray binaries can be suppressed by the X-ray irradiation of the compact secondary star. This causes feedback between the wind and the X-ray luminosity of the compact star. We estimated how the wind velocity on the face-on side of the donor star depends on the spectral state of the high-mass X-ray binary Cygnus X-3. We modeled the supersonic part of the wind by computing the line force (force multiplier) with the Castor, Abbott and Klein formalism and XSTAR physics and by solving the mass conservation and momentum balance equations. We computed the line force locally in the wind considering the radiation fields from both the donor and the compact star in each spectral state. The wind equations were solved at different orbital angles from the line joining the stars and taking the effect of wind clumping into account. Wind-induced accretion luminosities were estimated using the Bondi-Hoyle-Lyttleton formalism and computed wind velocities at the compact star. We found a correlation between the luminosities estimated from the observations for each spectral state of Cyg X-3 and the computed accretion luminosities assuming moderate wind clumping and a low mass of the compact star. For high wind clumping this correlation disappears. We show that soft X-rays (EUV) from the compact star penetrate the wind from the donor star and diminish the line force and consequently the wind velocity on the face-on side. This increases the computed accretion luminosities qualitatively in a similar manner as observed in the spectral evolution of Cyg X-3 for a moderate clumping volume filling factor and a compact star mass of a few (2 - 3) solar masses.
374 - Asif ud-Doula 2015
A subset (~ 10%) of massive stars present strong, globally ordered (mostly dipolar) magnetic fields. The trapping and channeling of their stellar winds in closed magnetic loops leads to magnetically confined wind shocks (MCWS), with pre-shock flow sp eeds that are some fraction of the wind terminal speed. These shocks generate hot plasma, a source of X-rays. In the last decade, several developments took place, notably the determination of the hot plasma properties for a large sample of objects using XMM-Newton and Chandra, as well as fully self-consistent MHD modelling and the identification of shock retreat effects in weak winds. Despite a few exceptions, the combination of magnetic confinement, shock retreat and rotation effects seems to be able to account for X-ray emission in massive OB stars. Here we review these new observational and theoretical aspects of this X-ray emission and envisage some perspectives for the next generation of X-ray observatories.
Thanks to the high sensitivity of the instruments on board the XMM-Newton and Chandra satellites, it has become possible to explore the properties of the X-ray emission from hot subdwarfs. The small but growing sample of hot subdwarfs detected in X-r ays includes binary systems, in which the X-rays result from wind accretion onto a compact companion (white dwarf or neutron star), as well as isolated sdO stars in which X-rays are probably due to shock instabilities in the wind. X-ray observations of these low mass stars provide information which can be useful also for our understanding of the winds of more luminous and massive early-type stars and can lead to the discovery of particularly interesting binary systems.
We use the recently developed Center for Radiative Shock Hydrodynamics (CRASH) code to numerically simulate laser-driven radiative shock experiments. These shocks are launched by an ablated beryllium disk and are driven down xenon-filled plastic tube s. The simulations are initialized by the two-dimensional version of the Lagrangian Hyades code which is used to evaluate the laser energy deposition during the first 1.1ns. The later times are calculated with the CRASH code. This code solves for the multi-material hydrodynamics with separate electron and ion temperatures on an Eulerian block-adaptive-mesh and includes a multi-group flux-limited radiation diffusion and electron thermal heat conduction. The goal of the present paper is to demonstrate the capability to simulate radiative shocks of essentially three-dimensional experimental configurations, such as circular and elliptical nozzles. We show that the compound shock structure of the primary and wall shock is captured and verify that the shock properties are consistent with order-of-magnitude estimates. The produced synthetic radiographs can be used for comparison with future nozzle experiments at high-energy-density laser facilities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا