ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulating radiative shocks in nozzle shock tubes

166   0   0.0 ( 0 )
 نشر من قبل Bart van der Holst
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use the recently developed Center for Radiative Shock Hydrodynamics (CRASH) code to numerically simulate laser-driven radiative shock experiments. These shocks are launched by an ablated beryllium disk and are driven down xenon-filled plastic tubes. The simulations are initialized by the two-dimensional version of the Lagrangian Hyades code which is used to evaluate the laser energy deposition during the first 1.1ns. The later times are calculated with the CRASH code. This code solves for the multi-material hydrodynamics with separate electron and ion temperatures on an Eulerian block-adaptive-mesh and includes a multi-group flux-limited radiation diffusion and electron thermal heat conduction. The goal of the present paper is to demonstrate the capability to simulate radiative shocks of essentially three-dimensional experimental configurations, such as circular and elliptical nozzles. We show that the compound shock structure of the primary and wall shock is captured and verify that the shock properties are consistent with order-of-magnitude estimates. The produced synthetic radiographs can be used for comparison with future nozzle experiments at high-energy-density laser facilities.



قيم البحث

اقرأ أيضاً

We present the latest improvements in the Center for Radiative Shock Hydrodynamics (CRASH) code, a parallel block-adaptive-mesh Eulerian code for simulating high-energy-density plasmas. The implementation can solve for radiation models with either a gray or a multigroup method in the flux-limited-diffusion approximation. The electrons and ions are allowed to be out of temperature equilibrium and flux-limited electron thermal heat conduction is included. We have recently implemented a CRASH laser package with 3-D ray tracing, resulting in improved energy deposition evaluation. New, more accurate opacity models are available which significantly improve radiation transport in materials like xenon. In addition, the HYPRE preconditioner has been added to improve the radiation implicit solver. With this updated version of the CRASH code we study radiative shock tube problems. In our set-up, a 1 ns, 3.8 kJ laser pulse irradiates a 20 micron beryllium disk, driving a shock into a xenon-filled plastic tube. The electrons emit radiation behind the shock. This radiation from the shocked xenon preheats the unshocked xenon. Photons traveling ahead of the shock will also interact with the plastic tube, heat it, and in turn this can drive another shock off the wall into the xenon. We are now able to simulate the long term evolution of radiative shocks.
Mildly relativistic shocks in magnetized electron-ion plasmas are investigated with 2D kinetic particle-in-cell simulations of unprecedentedly high resolution and large scale for conditions that may be found at internal shocks in blazar cores. Ion-sc ale effects cause corrugations along the shock surface whose properties somewhat depend on the configuration of the mean perpendicular magnetic field, that is either in or out of the simulation plane. We show that the synchrotron maser instability persists to operate in mildly relativistic shocks in agreement with theoretical predictions and produces coherent emission of upstream-propagating electromagnetic waves. Shock front ripples are excited in both mean-field configurations and they engender effective wave amplification. The interaction of these waves with upstream plasma generates electrostatic wakefields.
Tidal disruption events (TDEs) occur when a star gets torn apart by the strong tidal forces of a supermassive black hole, which results in the formation of a debris stream that partly falls back towards the compact object. This gas moves along inclin ed orbital planes that intersect near pericenter, resulting in a so-called nozzle shock. We perform the first dedicated study of this interaction, making use of a two-dimensional simulation that follows the transverse gas evolution inside a given section of stream. This numerical approach circumvents the lack of resolution encountered near pericenter passage in global three-dimensional simulations using particle-based methods. As it moves inward, we find that the gas motion is purely ballistic, which near pericenter causes strong vertical compression that squeezes the stream into a thin sheet. Dissipation takes place at the resulting nozzle shock, inducing a rise in pressure that causes the collapsing gas to bounce back, although without imparting significant net expansion. As it recedes to larger distances, this matter continues to expand while remaining thin despite the influence of pressure forces. This gas evolution specifies the strength of the subsequent self-crossing shock, which we find to be more affected by black hole spin than previously estimated. We also evaluate the impact of general-relativistic effects, viscous dissipation, magnetic fields and radiative processes on the nozzle shock. This study represents an important step forward in the theoretical understanding of TDEs, bridging the gap between our robust knowledge of the fallback rate and the more complex following stages, during which most of the emission occurs.
98 - Ben Snow , Andrew Hillier 2019
Slow-mode shocks are important in understanding fast magnetic reconnection, jet formation and heating in the solar atmosphere, and other astrophysical systems. The atmospheric conditions in the solar chromosphere allow both ionised and neutral partic les to exist and interact. Under such conditions, fine substructures exist within slow-mode shocks due to the decoupling and recoupling of the plasma and neutral species. We study numerically the fine substructure within slow-mode shocks in a partially ionised plasma, in particular, analysing the formation of an intermediate transition within the slow-mode shock. High-resolution 1D numerical simulations are performed using the (Punderline{I}P) code using a two-fluid approach. We discover that long-lived intermediate (Alfven) shocks can form within the slow-mode shock, where there is a shock transition from above to below the Alfven speed and a reversal of the magnetic field across the shock front. The collisional coupling provides frictional heating to the neutral fluid, resulting in a Sedov-Taylor-like expansion with overshoots in the neutral velocity and neutral density. The increase in density results in a decrease of the Alfven speed and with this the plasma inflow is accelerated to above the Alfven speed within the finite width of the shock leading to the intermediate transition. This process occurs for a wide range of physical parameters and an intermediate shock is present for all investigated values of plasma-$beta$, neutral fraction, and magnetic angle. As time advances the magnitude of the magnetic field reversal decreases since the neutral pressure cannot balance the Lorentz force. The intermediate shock is long-lived enough to be considered a physical structure, independent of the initial conditions.
105 - Seiji Zenitani 2015
The shock structure of a plasmoid in magnetic reconnection in low-beta plasmas is investigated by two-dimensional magnetohydrodynamic simulations. Using a high-accuracy code with unprecedented resolution, shocks, discontinuities, and their intersecti ons are resolved and clarified. Contact discontinuities emanate from triple-shock intersection points, separating fluids of different origins. Shock-diamonds inside the plasmoid appear to decelerate a supersonic flow. New shock-diamonds and a slow expansion fan are found inside the Petschek outflow. A sufficient condition for the new shock-diamonds and the relevance to astrophysical jets are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا