ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermodynamics of Ising spins on the Triangular Kagome Lattice: Exact analytical method and Monte Carlo simulations

285   0   0.0 ( 0 )
 نشر من قبل Daoxin Yao
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the thermodynamics of Ising spins on the triangular kagome lattice (TKL) using exact analytic methods as well as Monte Carlo simulations. We present the free energy, internal energy, specific heat, entropy, sublattice magnetizations, and susceptibility. We describe the rich phase diagram of the model as a function of coupling constants, temperature, and applied magnetic field. For frustrated interactions in the absence of applied field, the ground state is a spin liquid phase with integer residual entropy per spin $s_0/k_B={1/9} ln 72approx 0.4752...$. In weak applied field, the system maps to the dimer model on a honeycomb lattice, with irrational residual entropy 0.0359 per spin and quasi-long-range order with power-law spin-spin correlations that should be detectable by neutron scattering. The power-law correlations become exponential at finite temperatures, but the correlation length may still be long.



قيم البحث

اقرأ أيضاً

The recently fabricated two-dimensional magnetic materials Cu9X2(cpa)6.xH2O (cpa=2-carboxypentonic acid; X=F,Cl,Br) have copper sites which form a triangular kagome lattice (TKL), formed by introducing small triangles (``a-trimers) inside of each kag ome triangle (``b-trimer). We show that in the limit where spins residing on b-trimers have Ising character, quantum fluctuations of XXZ spins residing on the a-trimers can be exactly accounted for in the absence of applied field. This is accomplished through a mapping to the kagome Ising model, for which exact analytic solutions exist. We derive the complete finite temperature phase diagram for this XXZ-Ising model, including the residual zero temperature entropies of the seven ground state phases. Whereas the disordered (spin liquid) ground state of the pure Ising TKL model has macroscopic residual entropy ln72=4.2767... per unit cell, the introduction of transverse(quantum) couplings between neighboring $a$-spins reduces this entropy to 2.5258... per unit cell. In the presence of applied magnetic field, we map the TKL XXZ-Ising model to the kagome Ising model with three-spin interactions, and derive the ground state phase diagram. A small (or even infinitesimal) field leads to a new phase that corresponds to a non-intersecting loop gas on the kagome lattice, with entropy 1.4053... per unit cell and a mean magnetization for the b-spins of 0.12(1) per site. In addition, we find that for moderate applied field, there is a critical spin liquid phase which maps to close-packed dimers on the honeycomb lattice, which survives even when the a-spins are in the Heisenberg limit.
We derive exact results for close-packed dimers on the triangular kagome lattice (TKL), formed by inserting triangles into the triangles of the kagome lattice. Because the TKL is a non-bipartite lattice, dimer-dimer correlations are short-ranged, so that the ground state at the Rokhsar-Kivelson (RK) point of the corresponding quantum dimer model on the same lattice is a short-ranged spin liquid. Using the Pfaffian method, we derive an exact form for the free energy, and we find that the entropy is 1/3 ln2 per site, regardless of the weights of the bonds. The occupation probability of every bond is 1/4 in the case of equal weights on every bond. Similar to the case of lattices formed by corner-sharing triangles (such as the kagome and squagome lattices), we find that the dimer-dimer correlation function is identically zero beyond a certain (short) distance. We find in addition that monomers are deconfined on the TKL, indicating that there is a short-ranged spin liquid phase at the RK point. We also find exact results for the ground state energy of the classical Heisenberg model. The ground state can be ferromagnetic, ferrimagnetic, locally coplanar, or locally canted, depending on the couplings. From the dimer model and the classical spin model, we derive upper bounds on the ground state energy of the quantum Heisenberg model on the TKL.
This paper has a pedagogical introduction. We describe the correct method for performing Monte Carlo simulations of Ising model systems with spin greater than one half. Correct and incorrect procedures are clearly outlined and the consequences of usi ng the incorrect procedure are shown. The difference between Kawasaki and Glauber dynamics is then outlined and both methods are applied to the antiferromagnetic square and triangular lattices for S =1.
The classical XXZ triangular-lattice antiferromagnet (TAF) shows both an Ising and a BKT transition, related to the chirality and the in-plane spin components, respectively. In this paper the quantum effects on the thermodynamic quantities are evalua ted by means of the pure-quantum self-consistent harmonic approximation (PQSCHA), that allows one to deal with any spin value through classical MC simulations. We report the internal energy, the specific heat, and the in-plane correlation length of the quantum XX0 TAF, for S=1/2, 1, 5/2. The quantum transition temperatures turn out to be smaller the smaller the spin, and agree with the few available theoretical and numerical estimates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا