ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-varying Learning and Content Analytics via Sparse Factor Analysis

334   0   0.0 ( 0 )
 نشر من قبل Andrew Lan
 تاريخ النشر 2013
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose SPARFA-Trace, a new machine learning-based framework for time-varying learning and content analytics for education applications. We develop a novel message passing-based, blind, approximate Kalman filter for sparse factor analysis (SPARFA), that jointly (i) traces learner concept knowledge over time, (ii) analyzes learner concept knowledge state transitions (induced by interacting with learning resources, such as textbook sections, lecture videos, etc, or the forgetting effect), and (iii) estimates the content organization and intrinsic difficulty of the assessment questions. These quantities are estimated solely from binary-valued (correct/incorrect) graded learner response data and a summary of the specific actions each learner performs (e.g., answering a question or studying a learning resource) at each time instance. Experimental results on two online course datasets demonstrate that SPARFA-Trace is capable of tracing each learners concept knowledge evolution over time, as well as analyzing the quality and content organization of learning resources, the question-concept associations, and the question intrinsic difficulties. Moreover, we show that SPARFA-Trace achieves comparable or better performance in predicting unobserved learner responses than existing collaborative filtering and knowledge tracing approaches for personalized education.



قيم البحث

اقرأ أيضاً

We describe a new library named picasso, which implements a unified framework of pathwise coordinate optimization for a variety of sparse learning problems (e.g., sparse linear regression, sparse logistic regression, sparse Poisson regression and sca led sparse linear regression) combined with efficient active set selection strategies. Besides, the library allows users to choose different sparsity-inducing regularizers, including the convex $ell_1$, nonconvex MCP and SCAD regularizers. The library is coded in C++ and has user-friendly R and Python wrappers. Numerical experiments demonstrate that picasso can scale up to large problems efficiently.
203 - Zichao Wang , Yi Gu , Andrew Lan 2020
We propose VarFA, a variational inference factor analysis framework that extends existing factor analysis models for educational data mining to efficiently output uncertainty estimation in the models estimated factors. Such uncertainty information is useful, for example, for an adaptive testing scenario, where additional tests can be administered if the model is not quite certain about a students skill level estimation. Traditional Bayesian inference methods that produce such uncertainty information are computationally expensive and do not scale to large data sets. VarFA utilizes variational inference which makes it possible to efficiently perform Bayesian inference even on very large data sets. We use the sparse factor analysis model as a case study and demonstrate the efficacy of VarFA on both synthetic and real data sets. VarFA is also very general and can be applied to a wide array of factor analysis models.
We solve the compressive sensing problem via convolutional factor analysis, where the convolutional dictionaries are learned {em in situ} from the compressed measurements. An alternating direction method of multipliers (ADMM) paradigm for compressive sensing inversion based on convolutional factor analysis is developed. The proposed algorithm provides reconstructed images as well as features, which can be directly used for recognition ($e.g.$, classification) tasks. When a deep (multilayer) model is constructed, a stochastic unpooling process is employed to build a generative model. During reconstruction and testing, we project the upper layer dictionary to the data level and only a single layer deconvolution is required. We demonstrate that using $sim30%$ (relative to pixel numbers) compressed measurements, the proposed model achieves the classification accuracy comparable to the original data on MNIST. We also observe that when the compressed measurements are very limited ($e.g.$, $<10%$), the upper layer dictionary can provide better reconstruction results than the bottom layer.
High-dimensional simulation optimization is notoriously challenging. We propose a new sampling algorithm that converges to a global optimal solution and suffers minimally from the curse of dimensionality. The algorithm consists of two stages. First, we take samples following a sparse grid experimental design and approximate the response surface via kernel ridge regression with a Brownian field kernel. Second, we follow the expected improvement strategy -- with critical modifications that boost the algorithms sample efficiency -- to iteratively sample from the next level of the sparse grid. Under mild conditions on the smoothness of the response surface and the simulation noise, we establish upper bounds on the convergence rate for both noise-free and noisy simulation samples. These upper bounds deteriorate only slightly in the dimension of the feasible set, and they can be improved if the objective function is known to be of a higher-order smoothness. Extensive numerical experiments demonstrate that the proposed algorithm dramatically outperforms typical alternatives in practice.
Iterative hard thresholding (IHT) is a projected gradient descent algorithm, known to achieve state of the art performance for a wide range of structured estimation problems, such as sparse inference. In this work, we consider IHT as a solution to th e problem of learning sparse discrete distributions. We study the hardness of using IHT on the space of measures. As a practical alternative, we propose a greedy approximate projection which simultaneously captures appropriate notions of sparsity in distributions, while satisfying the simplex constraint, and investigate the convergence behavior of the resulting procedure in various settings. Our results show, both in theory and practice, that IHT can achieve state of the art results for learning sparse distributions.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا