ﻻ يوجد ملخص باللغة العربية
Iterative hard thresholding (IHT) is a projected gradient descent algorithm, known to achieve state of the art performance for a wide range of structured estimation problems, such as sparse inference. In this work, we consider IHT as a solution to the problem of learning sparse discrete distributions. We study the hardness of using IHT on the space of measures. As a practical alternative, we propose a greedy approximate projection which simultaneously captures appropriate notions of sparsity in distributions, while satisfying the simplex constraint, and investigate the convergence behavior of the resulting procedure in various settings. Our results show, both in theory and practice, that IHT can achieve state of the art results for learning sparse distributions.
The sparse inverse covariance estimation problem is commonly solved using an $ell_{1}$-regularized Gaussian maximum likelihood estimator known as graphical lasso, but its computational cost becomes prohibitive for large data sets. A recent line of re
We study --both in theory and practice-- the use of momentum motions in classic iterative hard thresholding (IHT) methods. By simply modifying plain IHT, we investigate its convergence behavior on convex optimization criteria with non-convex constrai
Sparse Canonical Correlation Analysis (CCA) has received considerable attention in high-dimensional data analysis to study the relationship between two sets of random variables. However, there has been remarkably little theoretical statistical founda
Compressed sensing (CS) or sparse signal reconstruction (SSR) is a signal processing technique that exploits the fact that acquired data can have a sparse representation in some basis. One popular technique to reconstruct or approximate the unknown s
We propose SPARFA-Trace, a new machine learning-based framework for time-varying learning and content analytics for education applications. We develop a novel message passing-based, blind, approximate Kalman filter for sparse factor analysis (SPARFA)