ﻻ يوجد ملخص باللغة العربية
In crowdsourcing markets, there are two different type jobs, i.e. homogeneous jobs and heterogeneous jobs, which need to be allocated to workers. Incentive mechanisms are essential to attract extensive user participating for achieving good service quality, especially under a given budget constraint condition. To this end, recently, Singer et al. propose a novel class of auction mechanisms for determining near-optimal prices of tasks for crowdsourcing markets constrained by the given budget. Their mechanisms are very useful to motivate extensive user to truthfully participate in crowdsourcing markets. Although they are so important, there still exist many security and privacy challenges in real-life environments. In this paper, we present a general privacy-preserving verifiable incentive mechanism for crowdsourcing markets with the budget constraint, not only to exploit how to protect the bids and assignments privacy, and the chosen winners privacy in crowdsourcing markets with homogeneous jobs and heterogeneous jobs and identity privacy from users, but also to make the verifiable payment between the platform and users for crowdsourcing applications. Results show that our general privacy-preserving verifiable incentive mechanisms achieve the same results as the generic one without privacy preservation.
Recently, a novel class of incentive mechanisms is proposed to attract extensive users to truthfully participate in crowd sensing applications with a given budget constraint. The class mechanisms also bring good service quality for the requesters in
Federated learning (FL) is an emerging paradigm for machine learning, in which data owners can collaboratively train a model by sharing gradients instead of their raw data. Two fundamental research problems in FL are incentive mechanism and privacy p
Incentive mechanism plays a critical role in privacy-aware crowdsensing. Most previous studies on co-design of incentive mechanism and privacy preservation assume a trustworthy fusion center (FC). Very recent work has taken steps to relax the assumpt
With the proliferation of the digital data economy, digital data is considered as the crude oil in the twenty-first century, and its value is increasing. Keeping pace with this trend, the model of data market trading between data providers and data c
Outsourcing neural network inference tasks to an untrusted cloud raises data privacy and integrity concerns. To address these challenges, several privacy-preserving and verifiable inference techniques have been proposed based on replacing the non-pol