ترغب بنشر مسار تعليمي؟ اضغط هنا

Inhomogeneous first-passage percolation

203   0   0.0 ( 0 )
 نشر من قبل Daniel Ahlberg
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study first-passage percolation where edges in the left and right half-planes are assigned values according to different distributions. We show that the asymptotic growth of the resulting inhomogeneous first-passage process obeys a shape theorem, and we express the limiting shape in terms of the limiting shapes for the homogeneous processes for the two weight distributions. We further show that there exist pairs of distributions for which the rate of growth in the vertical direction is strictly larger than the rate of growth of the homogeneous process with either of the two distributions, and that this corresponds to the creation of a defect along the vertical axis in the form of a `pyramid.



قيم البحث

اقرأ أيضاً

In this paper we study stationary last passage percolation (LPP) in half-space geometry. We determine the limiting distribution of the last passage time in a critical window close to the origin. The result is a new two-parameter family of distributio ns: one parameter for the strength of the diagonal bounding the half-space (strength of the source at the origin in the equivalent TASEP language) and the other for the distance of the point of observation from the origin. It should be compared with the one-parameter family giving the Baik--Rains distributions for full-space geometry. We finally show that far enough away from the characteristic line, our distributions indeed converge to the Baik--Rains family. We derive our results using a related integrable model having Pfaffian structure together with careful analytic continuation and steepest descent analysis.
Consider first passage percolation with identical and independent weight distributions and first passage time ${rm T}$. In this paper, we study the upper tail large deviations $mathbb{P}({rm T}(0,nx)>n(mu+xi))$, for $xi>0$ and $x eq 0$ with a time co nstant $mu$ and a dimension $d$, for weights that satisfy a tail assumption $ beta_1exp{(-alpha t^r)}leq mathbb P(tau_e>t)leq beta_2exp{(-alpha t^r)}.$ When $rleq 1$ (this includes the well-known Eden growth model), we show that the upper tail large deviation decays as $exp{(-(2dxi +o(1))n)}$. When $1< rleq d$, we find that the rate function can be naturally described by a variational formula, called the discrete p-Capacity, and we study its asymptotics. For $r<d$, we show that the large deviation event ${rm T}(0,nx)>n(mu+xi)$ is described by a localization of high weights around the origin. The picture changes for $rgeq d$ where the configuration is not anymore localized.
These lecture notes are written as reference material for the Advanced Course Hydrodynamical Methods in Last Passage Percolation Models, given at the 28th Coloquio Brasileiro de Matematica at IMPA, Rio de Janeiro, July 2011.
In this note we investigate the last passage percolation model in the presence of macroscopic inhomogeneity. We analyze how this affects the scaling limit of the passage time, leading to a variational problem that provides an ODE for the deterministi c limiting shape of the maximal path. We obtain a sufficient analytical condition for uniqueness of the solution for the variational problem. Consequences for the totally asymmetric simple exclusion process are discussed.
In this paper we consider an equilibrium last-passage percolation model on an environment given by a compound two-dimensional Poisson process. We prove an $LL^2$-formula relating the initial measure with the last-passage percolation time. This formul a turns out to be a useful tool to analyze the fluctuations of the last-passage times along non-characteristic directions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا