ترغب بنشر مسار تعليمي؟ اضغط هنا

Last Passage Percolation in Macroscopically Inhomogeneous Media

516   0   0.0 ( 0 )
 نشر من قبل Leonardo Rolla
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this note we investigate the last passage percolation model in the presence of macroscopic inhomogeneity. We analyze how this affects the scaling limit of the passage time, leading to a variational problem that provides an ODE for the deterministic limiting shape of the maximal path. We obtain a sufficient analytical condition for uniqueness of the solution for the variational problem. Consequences for the totally asymmetric simple exclusion process are discussed.



قيم البحث

اقرأ أيضاً

We study first-passage percolation where edges in the left and right half-planes are assigned values according to different distributions. We show that the asymptotic growth of the resulting inhomogeneous first-passage process obeys a shape theorem, and we express the limiting shape in terms of the limiting shapes for the homogeneous processes for the two weight distributions. We further show that there exist pairs of distributions for which the rate of growth in the vertical direction is strictly larger than the rate of growth of the homogeneous process with either of the two distributions, and that this corresponds to the creation of a defect along the vertical axis in the form of a `pyramid.
These lecture notes are written as reference material for the Advanced Course Hydrodynamical Methods in Last Passage Percolation Models, given at the 28th Coloquio Brasileiro de Matematica at IMPA, Rio de Janeiro, July 2011.
The aim of this article is to study the forest composed by point-to-line geodesics in the last-passage percolation model with exponential weights. We will show that the location of the root can be described in terms of the maxima of a random walk, wh ose distribution will depend on the geometry of the substrate (line). For flat substrates, we will get power law behaviour of the height function, study its scaling limit, and describe it in terms of variational problems involving the Airy process.
In this paper we study stationary last passage percolation (LPP) in half-space geometry. We determine the limiting distribution of the last passage time in a critical window close to the origin. The result is a new two-parameter family of distributio ns: one parameter for the strength of the diagonal bounding the half-space (strength of the source at the origin in the equivalent TASEP language) and the other for the distance of the point of observation from the origin. It should be compared with the one-parameter family giving the Baik--Rains distributions for full-space geometry. We finally show that far enough away from the characteristic line, our distributions indeed converge to the Baik--Rains family. We derive our results using a related integrable model having Pfaffian structure together with careful analytic continuation and steepest descent analysis.
In this paper we consider the geodesic tree in exponential last passage percolation. We show that for a large class of initial conditions around the origin, the line-to-point geodesic that terminates in a cylinder of width $o(N^{2/3})$ and length $o( N)$ agrees in the cylinder, with the stationary geodesic sharing the same end point. In the case of the point-to-point model, we consider width $delta N^{2/3}$ and length up to $delta^{3/2} N/(log(delta^{-1}))^3$ and provide lower and upper bound for the probability that the geodesics agree in that cylinder.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا