ﻻ يوجد ملخص باللغة العربية
A family of sets is called union-closed if whenever $A$ and $B$ are sets of the family, so is $Acup B$. The long-standing union-closed conjecture states that if a family of subsets of $[n]$ is union-closed, some element appears in at least half the sets of the family. A natural weakening is that the union-closed conjecture holds for large families; that is, families consisting of at least $p_02^n$ sets for some constant $p_0$. The first result in this direction appears in a recent paper of Balla, Bollobas and Eccles cite{BaBoEc}, who showed that union-closed families of at least $frac{2}{3}2^n$ sets satisfy the conjecture --- they proved this by determining the minimum possible average size of a set in a union-closed family of given size. However, the methods used in that paper cannot prove a better constant than $frac{2}{3}$. Here, we provide a stability result for the main theorem of cite{BaBoEc}, and as a consequence we prove the union-closed conjecture for families of at least $(frac{2}{3}-c)2^n$ sets, for a positive constant $c$.
We show that the Union-Closed Conjecture holds for the union-closed family generated by the cyclic translates of any fixed set.
In this very short note, we point out that the average overlap density of a union-closed family $mathcal{F}$ of subsets of ${1,2,ldots,n}$ may be as small as $Theta((log log |mathcal{F}|)/(log |mathcal{F}|))$, for infinitely many positive integers $n$.
Given a sequence $mathbf{k} := (k_1,ldots,k_s)$ of natural numbers and a graph $G$, let $F(G;mathbf{k})$ denote the number of colourings of the edges of $G$ with colours $1,dots,s$ such that, for every $c in {1,dots,s}$, the edges of colour $c$ conta
We study the inverse problem of identifying a periodic potential perturbation of the Dirichlet Laplacian acting in an infinite cylindrical domain, whose cross section is assumed to be bounded. We prove log-log stable determination of the potential wi
Three intersection theorems are proved. First, we determine the size of the largest set system, where the system of the pairwise unions is l-intersecting. Then we investigate set systems where the union of any s sets intersect the union of any t sets