ﻻ يوجد ملخص باللغة العربية
Three intersection theorems are proved. First, we determine the size of the largest set system, where the system of the pairwise unions is l-intersecting. Then we investigate set systems where the union of any s sets intersect the union of any t sets. The maximal size of such a set system is determined exactly if s+t<5, and asymptotically if s+t>4. Finally, we exactly determine the maximal size of a k-uniform set system that has the above described (s,t)-union-intersecting property, for large enough n.
The notion of cross intersecting set pair system of size $m$, $Big({A_i}_{i=1}^m, {B_i}_{i=1}^mBig)$ with $A_icap B_i=emptyset$ and $A_icap B_j eemptyset$, was introduced by Bollobas and it became an important tool of extremal combinatorics. His clas
We study the basic operation of set union in the global model of differential privacy. In this problem, we are given a universe $U$ of items, possibly of infinite size, and a database $D$ of users. Each user $i$ contributes a subset $W_i subseteq U$
Given a combinatorial design $mathcal{D}$ with block set $mathcal{B}$, the block-intersection graph (BIG) of $mathcal{D}$ is the graph that has $mathcal{B}$ as its vertex set, where two vertices $B_{1} in mathcal{B}$ and $B_{2} in mathcal{B} $ are ad
List coloring generalizes graph coloring by requiring the color of a vertex to be selected from a list of colors specific to that vertex. One refinement of list coloring, called choosability with separation, requires that the intersection of adjacent
A family of sets is said to be emph{symmetric} if its automorphism group is transitive, and emph{intersecting} if any two sets in the family have nonempty intersection. Our purpose here is to study the following question: for $n, kin mathbb{N}$ with