ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiwavelength Observations of The TeV Binary LS I +61 303 with VERITAS, Fermi-LAT and Swift-XRT During a TeV Outburst

119   0   0.0 ( 0 )
 نشر من قبل Andrew Smith
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of a multiwavelength observational campaign on the TeV binary system LS I +61 303 with the VERITAS telescope array (>200 GeV), Fermi-LAT (0.3-300 GeV), and Swift-XRT (2-10 keV). The data were taken from December 2011 through January 2012 and show a strong detection in all three wavebands. During this period VERITAS obtained 24.9 hours of quality selected livetime data in which LS I +61 303 was detected at a statistical sig- nificance of 11.9 sigma. These TeV observations show evidence for nightly variability in the TeV regime at a post-trial significance of 3.6 sigma. The combination of the simultaneously obtained TeV and X-ray fluxes do not demonstrate any evidence for a correlation between emission in the two bands. For the first time since the launch of the Fermi satellite in 2008, this TeV detection allows the construction of a detailed MeV-TeV spectral energy distribution from LS I +61 303. This spectrum shows a distinct cutoff in emission near 4 GeV, with emission seen by the VERITAS observations following a simple power-law above 200 GeV. This feature in the spectrum of LS I +61 303, obtained from overlapping observations with Fermi-LAT and VERITAS, may indicate that there are two distinct populations of accelerated particles producing the GeV and TeV emission.



قيم البحث

اقرأ أيضاً

181 - V. A. Acciari , E. Aliu , T. Arlen 2011
We present the results of observations of the TeV binary LS I +61 303 with the VERITAS telescope array between 2008 and 2010, at energies above 300 GeV. In the past, both ground-based gamma-ray telescopes VERITAS and MAGIC have reported detections of TeV emission near the apastron phases of the binary orbit. The observations presented here show no strong evidence for TeV emission during these orbital phases; however, during observations taken in late 2010, significant emission was detected from the source close to the phase of superior conjunction (much closer to periastron passage) at a 5.6 standard deviation (5.6 sigma) post-trials significance. In total, between October 2008 and December 2010 a total exposure of 64.5 hours was accumulated with VERITAS on LS I +61 303, resulting in an excess at the 3.3 sigma significance level for constant emission over the entire integrated dataset. The flux upper limits derived for emission during the previously reliably active TeV phases (i.e. close to apastron) are less than 5% of the Crab Nebula flux in the same energy range. This result stands in apparent contrast to previous observations by both MAGIC and VERITAS which detected the source during these phases at >10% of the Crab Nebula flux. During the two year span of observations, a large amount of X-ray data were also accrued on LS I +61 303 by the Swift X-ray Telescope (XRT) and the Rossi X-ray Timing Explorer Timing (RXTE) Proportional Counter Array (PCA). We find no evidence for a correlation between emission in the X-ray and TeV regimes during 20 directly overlapping observations. We also comment on data obtained contemporaneously by the Fermi Large Area Telescope (LAT).
We present results from a long-term monitoring campaign on the TeV binary LSI +61 303 with VERITAS at energies above 500 GeV, and in the 2-10 keV hard X-ray bands with RXTE and Swift, sampling nine 26.5 day orbital cycles between September 2006 and F ebruary 2008. The binary was observed by VERITAS to be variable, with all integrated observations resulting in a detection at the 8.8 sigma (2006/2007) and 7.3 sigma (2007/2008) significance level for emission above 500 GeV. The source was detected during active periods with flux values ranging from 5 to 20% of the Crab Nebula, varying over the course of a single orbital cycle. Additionally, the observations conducted in the 2007-2008 observing season show marginal evidence (at the 3.6 sigma significance level) for TeV emission outside of the apastron passage of the compact object around the Be star. Contemporaneous hard X-ray observations with RXTE and Swift show large variability with flux values typically varying between 0.5 and 3.0*10^-11 ergs cm^-2 s^-1 over a single orbital cycle. The contemporaneous X-ray and TeV data are examined and it is shown that the TeV sampling is not dense enough to detect a correlation between the two bands.
The TeV binary system LS I +61$^circ$ 303 is known for its regular, non-thermal emission pattern which traces the orbital period of the compact object in its 26.5 day orbit around its B0 Ve star companion. The system typically presents elevated TeV e mission around apastron passage with flux levels between 5% and 15% of the steady flux from the Crab Nebula (> 300 GeV). In this article, VERITAS observations of LS I +61$^circ$ 303 taken in late 2014 are presented, during which bright TeV flares around apastron at flux levels peaking above 30% of the Crab Nebula flux were detected. This is the brightest such activity from this source ever seen in the TeV regime. The strong outbursts have rise and fall times of less than a day. The short timescale of the flares, in conjunction with the observation of 10 TeV photons from LS I +61$^circ$ 303 during the flares, provides constraints on the properties of the accelerator in the source.
We study the characteristics of the TeV binary LS I +61$^circ$ 303 in radio, soft X-ray, hard X-ray, and gamma-ray (GeV and TeV) energies. The long term variability characteristics are examined as a function of the phase of the binary period of 26.49 6 days as well as the phase of the super orbital period of 1626 days, dividing the observations into a matrix of 10$times$10 phases of these two periods. It is found that the long term variability can be described by a sine function of the super orbital period, with the phase and amplitude systematically varying with the binary period phase. We also find a definite wavelength dependent change in this variability description. To understand the radiation mechanism, we define three states in the orbital/ super orbital phase matrix and examine the wide band spectral energy distribution. The derived source parameters indicate that the emission geometry is dominated by a jet structure showing a systematic variation with the orbital/ super orbital period. We suggest that LS I +61$^circ$ 303 is likely to be a micro-quasar with a steady jet.
LS I +61 303 is one of only a few high-mass X-ray binaries currently detected at high significance in very high energy gamma-rays. The system was observed over several orbital cycles (between September 2006 and February 2007) with the VERITAS array o f imaging air-Cherenkov telescopes. A signal of gamma-rays with energies above 300 GeV is found with a statistical significance of 8.4 standard deviations. The detected flux is measured to be strongly variable; the maximum flux is found during most orbital cycles at apastron. The energy spectrum for the period of maximum emission can be characterized by a power law with a photon index of Gamma=2.40+-0.16_stat+-0.2_sys and a flux above 300 GeV corresponding to 15-20% of the flux from the Crab Nebula.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا