ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiwavelength Observations of LS I +61 303 with VERITAS, Swift and RXTE

122   0   0.0 ( 0 )
 نشر من قبل Andrew Smith
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results from a long-term monitoring campaign on the TeV binary LSI +61 303 with VERITAS at energies above 500 GeV, and in the 2-10 keV hard X-ray bands with RXTE and Swift, sampling nine 26.5 day orbital cycles between September 2006 and February 2008. The binary was observed by VERITAS to be variable, with all integrated observations resulting in a detection at the 8.8 sigma (2006/2007) and 7.3 sigma (2007/2008) significance level for emission above 500 GeV. The source was detected during active periods with flux values ranging from 5 to 20% of the Crab Nebula, varying over the course of a single orbital cycle. Additionally, the observations conducted in the 2007-2008 observing season show marginal evidence (at the 3.6 sigma significance level) for TeV emission outside of the apastron passage of the compact object around the Be star. Contemporaneous hard X-ray observations with RXTE and Swift show large variability with flux values typically varying between 0.5 and 3.0*10^-11 ergs cm^-2 s^-1 over a single orbital cycle. The contemporaneous X-ray and TeV data are examined and it is shown that the TeV sampling is not dense enough to detect a correlation between the two bands.



قيم البحث

اقرأ أيضاً

We present the results of a multiwavelength observational campaign on the TeV binary system LS I +61 303 with the VERITAS telescope array (>200 GeV), Fermi-LAT (0.3-300 GeV), and Swift-XRT (2-10 keV). The data were taken from December 2011 through Ja nuary 2012 and show a strong detection in all three wavebands. During this period VERITAS obtained 24.9 hours of quality selected livetime data in which LS I +61 303 was detected at a statistical sig- nificance of 11.9 sigma. These TeV observations show evidence for nightly variability in the TeV regime at a post-trial significance of 3.6 sigma. The combination of the simultaneously obtained TeV and X-ray fluxes do not demonstrate any evidence for a correlation between emission in the two bands. For the first time since the launch of the Fermi satellite in 2008, this TeV detection allows the construction of a detailed MeV-TeV spectral energy distribution from LS I +61 303. This spectrum shows a distinct cutoff in emission near 4 GeV, with emission seen by the VERITAS observations following a simple power-law above 200 GeV. This feature in the spectrum of LS I +61 303, obtained from overlapping observations with Fermi-LAT and VERITAS, may indicate that there are two distinct populations of accelerated particles producing the GeV and TeV emission.
The TeV gamma-ray binary LS I +61 303, approximately 2 kpc from Earth, consists of a low mass compact object in an eccentric orbit around a massive Be star. LS I +61 303 exhibits modulated VHE gamma-ray emission around its 26.5 days orbit, with stron gest TeV emission during its apastron passage (orbital phases {phi}=0.55-0.65). Multiple flaring episodes with nightly flux variability at TeV energies have been observed since its detection in 2006. GeV, X-ray, and radio emission have been detected along the entire orbit, enabling detailed study of the orbital modulation pattern and its super-orbital period. Previously reported TeV baseline emission and spectral variations may indicate a neutron star flip-flop scenario, in which the binary system switches between accretor and propeller phases at different phases of the orbit. Since September 2007, VERITAS has observed LS I +61 303 over three additional seasons, accruing 220+ hours of data during different parts of its orbit. In this work, we present a summary of recent and long-term VERITAS observations of LS I +61 303. This analysis includes a discussion of the observed variation of TeV emission during different phases of the orbit, and during different superorbital phases.
188 - V. A. Acciari , E. Aliu , T. Arlen 2011
We present the results of observations of the TeV binary LS I +61 303 with the VERITAS telescope array between 2008 and 2010, at energies above 300 GeV. In the past, both ground-based gamma-ray telescopes VERITAS and MAGIC have reported detections of TeV emission near the apastron phases of the binary orbit. The observations presented here show no strong evidence for TeV emission during these orbital phases; however, during observations taken in late 2010, significant emission was detected from the source close to the phase of superior conjunction (much closer to periastron passage) at a 5.6 standard deviation (5.6 sigma) post-trials significance. In total, between October 2008 and December 2010 a total exposure of 64.5 hours was accumulated with VERITAS on LS I +61 303, resulting in an excess at the 3.3 sigma significance level for constant emission over the entire integrated dataset. The flux upper limits derived for emission during the previously reliably active TeV phases (i.e. close to apastron) are less than 5% of the Crab Nebula flux in the same energy range. This result stands in apparent contrast to previous observations by both MAGIC and VERITAS which detected the source during these phases at >10% of the Crab Nebula flux. During the two year span of observations, a large amount of X-ray data were also accrued on LS I +61 303 by the Swift X-ray Telescope (XRT) and the Rossi X-ray Timing Explorer Timing (RXTE) Proportional Counter Array (PCA). We find no evidence for a correlation between emission in the X-ray and TeV regimes during 20 directly overlapping observations. We also comment on data obtained contemporaneously by the Fermi Large Area Telescope (LAT).
89 - A.W. Smith 2008
A long term, multi-wavelength monitoring campaign on the TeV binary LS I +61 303 has been performed utilizing >300 GeV observations with VERITAS along with monitoring in the 0.2-10 keV band by RXTE and Swift between September 2006 and February 2008. The source was detected by VERITAS as a variable TeV source with flux values ranging from 5-20% of the Crab Nebula flux with the strongest flux levels appearing around apastron. X-ray observations by RXTE and Swift show the source as a highly variable hard X-ray source with flux values varying in the range of 0.5-3*10^-11 ergs cm^-2 s^-1 over a single orbital cycle. The 2007-2008 RXTE data set also shows the presence of several extremely large flaring episodes presenting a flux of up to 7.2*10^-11 ergs cm^-2 s^-1, the largest such flare recorded from this source. Comparison of the contemporaneous TeV and X-ray data does not show a correlation at this time, however, the sparsity of data sets do not preclude the existence of such a correlation.
LS I +61 303 is one of only a few high-mass X-ray binaries currently detected at high significance in very high energy gamma-rays. The system was observed over several orbital cycles (between September 2006 and February 2007) with the VERITAS array o f imaging air-Cherenkov telescopes. A signal of gamma-rays with energies above 300 GeV is found with a statistical significance of 8.4 standard deviations. The detected flux is measured to be strongly variable; the maximum flux is found during most orbital cycles at apastron. The energy spectrum for the period of maximum emission can be characterized by a power law with a photon index of Gamma=2.40+-0.16_stat+-0.2_sys and a flux above 300 GeV corresponding to 15-20% of the flux from the Crab Nebula.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا