ﻻ يوجد ملخص باللغة العربية
As is well known, the usual discrepancy is defined for a normal Q-Gorenstein variety. By using this discrepancy we can define a canonical singularity and a log canonical singularity. In the same way, by using a new notion, Mather-Jacobian discrepancy introduced in recent papers we can define a canonical singularity and a log canonical singularity for not necessarily normal or Q-Gorenstein varieties. In this paper, we show basic properties of these singularities, behavior of these singularities under deformations and determine all these singularities of dimension up to 2.
Inspired by several works on jet schemes and motivic integration, we consider an extension to singular varieties of the classical definition of discrepancy for morphisms of smooth varieties. The resulting invariant, which we call Jacobian discrepancy
In this paper we study singularities in arbitrary characteristic. We propose Finite Determination Conjecture for Mather-Jacobian minimal log discrepancies in terms of jet schemes of a singularity. The conjecture is equivalent to the boundedness of th
This paper characterizes singularities with Mather minimal log discrepancies in the highest unit interval, i.e., the interval between $d-1$ and $d$, where $d$ is the dimension of the scheme. The class of these singularities coincides with one of the
We prove the existence of $n$-complements for pairs with DCC coefficients and the ACC for minimal log discrepancies of exceptional singularities. In order to prove these results, we develop the theory of complements for real coefficients. We introduc
L. Moret-Bailly constructed families $mathfrak{C}rightarrow mathbb{P}^1$ of genus 2 curves with supersingular jacobian. In this paper we first classify the reducible fibers of a Moret-Bailly family using linear algebra over a quaternion algebra. The