ﻻ يوجد ملخص باللغة العربية
L. Moret-Bailly constructed families $mathfrak{C}rightarrow mathbb{P}^1$ of genus 2 curves with supersingular jacobian. In this paper we first classify the reducible fibers of a Moret-Bailly family using linear algebra over a quaternion algebra. The main result is an algorithm that exploits properties of two reducible fibers to compute a hyperelliptic model for any irreducible fiber of a Moret-Bailly family.
We describe a method to show that certain elliptic surfaces do not admit purely inseparable multisections (equivalently, that genus one curves over function fields admit no points over the perfect closure of the base field) and use it to show that an
We investigate the geometry of etale $4:1$ coverings of smooth complex genus 2 curves with the monodromy group isomorphic to the Klein four-group. There are two cases, isotropic and non-isotropic depending on the values of the Weil pairing restricted
The supersingular K3 surface X in characteristic 2 with Artin invariant 1 admits several genus 1 fibrations (elliptic and quasi-elliptic). We use a bijection between fibrations and definite even lattices of rank 20 and discriminant 4 to classify the
Given a prime number l greater than or equal to 5, we construct an infinite family of three-dimensional abelian varieties over Q such that, for any A/Q in the family, the Galois representation rho_{A, l}: Gal_Q -> GSp(6, l) attached to the l-torsion
We reformulate a fundamental result due to Cook, Harbourne, Migliore and Nagel on the existence and irreduciblity of unexpected plane curves of a set of points $Z$ in $mathbb{P}^2$, using the minimal degree of a Jacobian syzygy of the defining equati