ترغب بنشر مسار تعليمي؟ اضغط هنا

Charge disproportionation without charge transfer in the rare-earth nickelates as a possible mechanism for the metal-insulator transition

138   0   0.0 ( 0 )
 نشر من قبل Steven Johnston
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a model for the metal-insulator (MI) transition in the rare-earth nickelates RNiO$_3$, based upon a negative charge transfer energy and coupling to a rock-salt like lattice distortion of the NiO$_6$ octahedra. Using exact diagonalization and the Hartree-Fock approximation we demonstrate that electrons couple strongly to these distortions. For small distortions the system is metallic, with ground state of predominantly $d^8ligand$ character, where $ligand$ denotes a ligand hole. For sufficiently large distortions ($delta d_{rm Ni-O} sim 0.05 - 0.10AA$), however, a gap opens at the Fermi energy as the system enters a periodically distorted state alternating along the three crystallographic axes, with $(d^8ligand^2)_{S=0}(d^8)_{S=1}$ character, where $S$ is the total spin. Thus the MI transition may be viewed as being driven by an internal volume collapse where the NiO$_6$ octahedra with two ligand holes shrink around their central Ni, while the remaining octahedra expand accordingly, resulting in the ($1/2,1/2,1/2$) superstructure observed in x-ray diffraction in the insulating phase. This insulating state is an example of a new type of charge ordering achieved without any actual movement of the charge.



قيم البحث

اقرأ أيضاً

The metal-insulator transitions and the intriguing physical properties of rare-earth perovskite nickelates have attracted considerable attention in recent years. Nonetheless, a complete understanding of these materials remains elusive. Here, taking a NdNiO3 thin film as a representative example, we utilize a combination of x-ray absorption and resonant inelastic x-ray scattering (RIXS) spectroscopies to resolve important aspects of the complex electronic structure of the rare-earth nickelates. The unusual coexistence of bound and continuum excitations observed in the RIXS spectra provides strong evidence for the abundance of oxygen 2p holes in the ground state of these materials. Using cluster calculations and Anderson impurity model interpretation, we show that these distinct spectral signatures arise from a Ni 3d8 configuration along with holes in the oxygen 2p valence band, confirming suggestions that these materials do not obey a conventional positive charge-transfer picture, but instead exhibit a negative charge-transfer energy, in line with recent models interpreting the metal to insulator transition in terms of bond disproportionation.
We show that charge ordering (more precisely, two-sublattice bond disproportionation) in the rare earth nickelate perovskites is intimately related to a negative charge transfer energy. By adding an additional potential on the Ni d states we are able to vary the charge tranfer energy and compute relaxed structures within an ab-initio framework. We show that the difference in Ni-O bond lengths and the value of the ordered state magnetic moment correlate with the charge transfer energy and that the transition to the bond-disproportionated state occurs when the effective charge transfer energy becomes negative.
For most metals, increasing temperature (T) or disorder will quicken electron scattering. This hypothesis informs the Drude model of electronic conductivity. However, for so-called bad metals this predicts scattering times so short as to conflict wit h Heisenbergs uncertainty principle. Here we introduce the rare-earth nickelates (RNiO_3, R = rare earth) as a class of bad metals. We study SmNiO_3 thin films using infrared spectroscopy while varying T and disorder. We show that the interaction between lattice distortions and Ni-O bond covalence explains both the bad metal conduction and the insulator-metal transition in the nickelates by shifting spectral weight over the large energy scale established by the Ni-O orbital interaction, thus enabling very low sigma while preserving the Drude model and without violating the uncertainty principle.
It has been proposed that an extended version of the Hubbard model which potentially hosts rich possibilities of correlated physics may be well simulated by the transition metal dichalcogenide (TMD) moir{e} heterostructures. Motivated by recent repor ts of continuous metal insulator transition (MIT) at half filling, as well as correlated insulators at various fractional fillings in TMD moir{e} heterostructures, we propose a theory for the potentially continuous MIT with fractionalized electric charges. The charge fractionalization at the MIT will lead to experimental observable effects, such as a large universal resistivity jump and interaction driven bad metal at the MIT, as well as special scaling of the quasi-particle weight with the tuning parameter. These predictions are different from previously proposed theory for continuous MIT.
Rare-earth nickelates exhibit a remarkable metal-insulator transition accompanied by a structural transition associated with a lattice `breathing mode. Using model considerations and first-principles calculations, we present a theory of this phase tr ansition, which reveals the key role of the coupling between the electronic and lattice instabilities. We show that the transition is driven by the proximity to an electronic disproportionation instability which couples to the breathing mode, thus cooperatively driving the system into the insulating state. This allows us to identify two key control parameters of the transition: the susceptibility to electronic disproportionation and the stiffness of the lattice mode. We show that our findings can be rationalized in terms of a Landau theory involving two coupled order parameters, with general implications for transition-metal oxides.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا