ﻻ يوجد ملخص باللغة العربية
To gain insight into the physical conditions and kinematics of the warm (100-1000 K) gas around the red hyper-giant VY CMa, we performed sensitive high spectral resolution observations of molecular lines in the sub-mm/FIR using the HIFI instrument of the Herschel Space Observatory. We observed CO, H2O, and other molecular species, sampling excitation energies from a few tens to a few thousand K. These observations are part of the Herschel Guaranteed Time Key Program HIFISTARS. We detected the J=6-5, J=10-9, and J=16-15 lines of 12CO and 13CO at about 100, 300, and 750K above the ground state (and the 13CO J=9-8 line). These lines are crucial for improving the modelling of the internal layers of the envelope around VY CMa. We also detected 27 lines of H2O and its isotopomers, and 96 lines of species such as NH3, SiO, SO, SO2 HCN, OH and others, some of them originating from vibrationally excited levels. Three lines were not unambiguously assigned. Our observations confirm that VY CMas envelope must consist of two or more detached components. The molecular excitation in the outer layers is significantly lower than in the inner ones, resulting in strong self-absorbed profiles in molecular lines that are optically thick in this outer envelope, for instance, low-lying lines of H2O. Except for the most abundant species, CO and H2O, most of the molecular emission detected at these sub-mm/FIR wavelengths arise from the central parts of the envelope. The spectrum of VY CMa is very prominent in vibrationally excited lines, which are caused by the strong IR pumping present in the central regions. Compared with envelopes of other massive evolved stars, VY CMas emission is particularly strong in these vibrationally excited lines, as well as in the emission from less abundant species such as H13CN, SO, and NH3.
Titanium dioxide, TiO$_2$, is a refractory species that could play a crucial role in the dust-condensation sequence around oxygen-rich evolved stars. To date, gas phase TiO$_2$ has been detected only in the complex environment of the red supergiant V
Spectra, taken with the heterodyne instrument, HIFI, aboard the Herschel Space Observatory, of O-rich asymptotic giant branch (AGB) stars which form part of the guaranteed time key program HIFISTARS are presented. The aim of this program is to study
CONTEXT: Water vapour maser emission from evolved oxygen-rich stars remains poorly understood. Additional observations, including polarisation studies and simultaneous observation of different maser transitions may ultimately lead to greater insight.
We report the first identification of the optical bands of the B-X system of AlO in the red supergiant VY CMa. In addition to TiO, VO, ScO, and YO, which were recognized in the optical spectrum of the star long time ago, AlO is another refractory mol
A spectral line survey of the oxygen-rich red supergiant VY Canis Majoris was made between 279 and 355 GHz with the Submillimeter Array. Two hundred twenty three spectral features from 19 molecules (not counting isotopic species of some of them) were