ترغب بنشر مسار تعليمي؟ اضغط هنا

ALMA observations of TiO$_2$ around VY Canis Majoris

527   0   0.0 ( 0 )
 نشر من قبل Elvire De Beck
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Titanium dioxide, TiO$_2$, is a refractory species that could play a crucial role in the dust-condensation sequence around oxygen-rich evolved stars. To date, gas phase TiO$_2$ has been detected only in the complex environment of the red supergiant VY CMa. We aim to constrain the distribution and excitation of TiO$_2$ around VY CMa in order to clarify its role in dust formation. We analyse spectra and channel maps for TiO$_2$ extracted from ALMA science verification data. We detect 15 transitions of TiO$_2$, and spatially resolve the emission for the first time. The maps demonstrate a highly clumpy, anisotropic outflow in which the TiO$_2$ emission likely traces gas exposed to the stellar radiation field. A roughly east-west oriented, accelerating bipolar-like structure is found, of which the blue component runs into and breaks up around a solid continuum component. A distinct tail to the south-west is seen for some transitions, consistent with features seen in the optical and near-infrared. We find that a significant fraction of TiO$_2$ remains in the gas phase outside the dust-formation zone and suggest that this species might play only a minor role in the dust-condensation process around extreme oxygen-rich evolved stars like VY CMa.



قيم البحث

اقرأ أيضاً

We report the first detection of pure rotational transitions of TiO and TiO_2 at (sub-)millimeter wavelengths towards the red supergiant VY CMa. A rotational temperature, T_rot, of about 250 K was derived for TiO_2. Although T_rot was not well constr ained for TiO, it is likely somewhat higher than that of TiO_2. The detection of the Ti oxides confirms that they are formed in the circumstellar envelopes of cool oxygen-rich stars and may be the seeds of inorganic-dust formation, but alternative explanations for our observation of TiO and TiO_2 in the cooler regions of the envelope cannot be ruled out at this time. The observations suggest that a significant fraction of the oxides is not converted to dust, but instead remains in the gas phase throughout the outflow.
Cool, evolved stars have copious, enriched winds. The structure of these winds and the way they are accelerated is not well known. We need to improve our understanding by studying the dynamics from the pulsating stellar surface to about 10 stellar ra dii, where radiation pressure on dust is fully effective. Some red supergiants have highly asymmetric nebulae, implicating additional forces. We retrieved ALMA Science Verification data providing images of sub-mm line and continuum emission from VY CMa. This enables us to locate water masers with milli-arcsec precision and resolve the dusty continuum. The 658-, 321- and 325-GHz masers lie in irregular, thick shells at increasing distances from the centre of expansion. For the first time this is confirmed as the stellar position, coinciding with a compact peak offset to the NW of the brightest continuum emission. The maser shells (and dust formation zone) overlap but avoid each other on tens-au scales. Their distribution is broadly consistent with excitation models but the conditions and kinematics appear to be complicated by wind collisions, clumping and asymmetries.
The processes leading to dust formation and the subsequent role it plays in driving mass loss in cool evolved stars is an area of intense study. Here we present high resolution ALMA Science Verification data of the continuum emission around the highl y evolved oxygen-rich red supergiant VY CMa. These data enable us to study the dust in its inner circumstellar environment at a spatial resolution of 129 mas at 321 GHz and 59 mas at 658 GHz, thus allowing us to trace dust on spatial scales down to 11 R$_{star}$ (71 AU). Two prominent dust components are detected and resolved. The brightest dust component, C, is located 334 mas (61 R$_{star}$) South East of the star and has a dust mass of at least $2.5times 10^{-4}$ M$_{odot}$. It has a dust emissivity spectral index of $beta =-0.1$ at its peak, implying that it is optically thick at these frequencies with a cool core of $T_{d}lesssim 100$ K. Interestingly, not a single molecule in the ALMA data has emission close to the peak of this massive dust clump. The other main dust component, VY, is located at the position of the star and contains a total dust mass of $4.0 times 10^{-5} $M$_{odot}$. It also contains a weaker dust feature extending over $60$ R$_{star}$ to the North with the total component having a typical dust emissivity spectral index of $beta =0.7$. We find that at least $17%$ of the dust mass around VY CMa is located in clumps ejected within a more quiescent roughly spherical stellar wind, with a quiescent dust mass loss rate of $5 times 10^{-6}$ M$_{odot} $yr$^{-1}$. The anisotropic morphology of the dust indicates a continuous, directed mass loss over a few decades, suggesting that this mass loss cannot be driven by large convection cells alone.
The formation of inorganic dust in circumstellar environments of evolved stars is poorly understood. Spectra of molecules thought to be most important for the nucleation, i.e. AlO, TiO, and TiO2, have been recently detected in the red supergiant VY C Ma. These molecules are effectively formed in VY CMa and the observations suggest that non-equilibrium chemistry must be involved in their formation and nucleation into dust. In addition to exploring the recent observations of VY CMa, we briefly discuss the possibility of detecting these molecules in the dust-poor circumstellar environment of Betelgeuse.
To gain insight into the physical conditions and kinematics of the warm (100-1000 K) gas around the red hyper-giant VY CMa, we performed sensitive high spectral resolution observations of molecular lines in the sub-mm/FIR using the HIFI instrument of the Herschel Space Observatory. We observed CO, H2O, and other molecular species, sampling excitation energies from a few tens to a few thousand K. These observations are part of the Herschel Guaranteed Time Key Program HIFISTARS. We detected the J=6-5, J=10-9, and J=16-15 lines of 12CO and 13CO at about 100, 300, and 750K above the ground state (and the 13CO J=9-8 line). These lines are crucial for improving the modelling of the internal layers of the envelope around VY CMa. We also detected 27 lines of H2O and its isotopomers, and 96 lines of species such as NH3, SiO, SO, SO2 HCN, OH and others, some of them originating from vibrationally excited levels. Three lines were not unambiguously assigned. Our observations confirm that VY CMas envelope must consist of two or more detached components. The molecular excitation in the outer layers is significantly lower than in the inner ones, resulting in strong self-absorbed profiles in molecular lines that are optically thick in this outer envelope, for instance, low-lying lines of H2O. Except for the most abundant species, CO and H2O, most of the molecular emission detected at these sub-mm/FIR wavelengths arise from the central parts of the envelope. The spectrum of VY CMa is very prominent in vibrationally excited lines, which are caused by the strong IR pumping present in the central regions. Compared with envelopes of other massive evolved stars, VY CMas emission is particularly strong in these vibrationally excited lines, as well as in the emission from less abundant species such as H13CN, SO, and NH3.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا