ترغب بنشر مسار تعليمي؟ اضغط هنا

The Morphology and Dynamics of Jet-Driven Supernova Remnants: the Case of W49B

328   0   0.0 ( 0 )
 نشر من قبل Fabio De Colle
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The circumstellar medium (CSM) of a massive star is modified by its winds before a supernova (SN) explosion occurs, and thus the evolution of the resulting supernova remnant (SNR) is influenced by both the geometry of the explosion as well as the complex structure of the CSM. Motivated by recent work suggesting the SNR W49B was a jet-driven SN expanding in a complex CSM, we explore how the dynamics and the metal distributions in a jet-driven explosion are modified by the interaction with the surrounding environment. In particular, we perform hydrodynamical calculations to study the dynamics and explosive nucleosynthesis of a jet-driven SN triggered by the collapse of a 25 solar masses Wolf-Rayet star and its subsequent interaction with the CSM up to several hundred years following the explosion. We find that although the CSM has small-scale effects on the structure of the SNR, the overall morphology and abundance patterns are reflective of the initial asymmetry of the SN explosion. Thus, we predict that jet-driven SNRs, such as W49B, should be identifiable based on morphology and abundance patterns at ages up to several hundred years, even if they expand into a complex CSM environment.



قيم البحث

اقرأ أيضاً

Supernova remnants (SNRs) are known to accelerate particles to relativistic energies, on account of their nonthermal emission. The observational progress from radio to gamma-ray observations reveals more and more morphological features that need to b e accounted for when modeling the emission from those objects. We use our time-dependent acceleration code RATPaC to study the formation of extended gamma-ray halos around supernova remnants and the morphological implications that arise when the high-energetic particles start to escape from the SNRs. We performed spherically symmetric 1D simulations in which we simultaneously solved the transport equations for cosmic rays, magnetic turbulence, and the hydrodynamical flow of the thermal plasma. Our simulations span 25,000 years, thus covering the free-expansion and the Sedov-Taylor phase of the SNRs evolution. We find a strong difference in the morphology of the gamma-ray emission from SNRs at later stages dependent on the emission process. At early times, both the inverse-Compton and the Pion-decay morphology are shell-like. However, as soon as the maximum-energy of the freshly accelerated particles starts to fall, the inverse-Compton morphology starts to become center-filled, whereas the Pion-decay morphology keeps its shell-like structure. Escaping high-energy electrons start to form an emission halo around the SNR at this time. There are good prospects for detecting this spectrally hard emission with the future Cerenkov Telescope Array, as there are for detecting variations in the gamma-ray spectral index across the interior of the SNR. Further, we find a constantly decreasing nonthermal X-ray flux that makes a detection of X-ray unlikely after the first few thousand years of the SNRs evolution. The radio flux is increasing throughout the SNRs lifetime and changes from a shell-like to a more center-filled morphology later on.
109 - Laura A. Lopez 2018
We review the major advances in understanding the morphologies and kinematics of supernova remnants (SNRs). Simulations of SN explosions have improved dramatically over the last few years, and SNRs can be used to test models through comparison of pre dictions with SNRs observed large-scale compositional and morphological properties as well as the three-dimensional kinematics of ejecta material. In particular, Cassiopeia A -- the youngest known core-collapse SNR in the Milky Way -- offers an up-close view of the complexity of these explosive events that cannot be resolved in distant, extragalactic sources. We summarize the progress in tying SNRs to their progenitors explosions through imaging and spectroscopic observations, and we discuss exciting future prospects for SNR studies, such as X-ray microcalorimeters
We report on NuSTAR observations of the mixed morphology supernova remnant (SNR) W49B, focusing on its nonthermal emission. Whereas radio observations as well as recent gamma-ray observations evidenced particle acceleration in this SNR, nonthermal X- ray emission has not been reported so far. With the unprecedented sensitivity of NuSTAR in the hard X-ray band, we detect a significant power-law-like component extending up to $sim 20~{rm keV}$, most probably of nonthermal origin. The newly discovered component has a photon index of $Gamma =1.4^{+1.0}_{-1.1}$ with an energy flux between 10 and 20 keV of $(3.3 pm 0.7) times 10^{-13}~{rm erg}~{rm cm}^{-2}~{rm s}^{-1}$. The emission mechanism is discussed based on the NuSTAR data combined with those in other wavelengths in the literature. The NuSTAR data, in terms both of the spectral slope and of the flux, are best interpreted as nonthermal electron bremsstrahlung. If this scenario is the case, then the NuSTAR emission provides a new probe to sub-relativistic particles accelerated in the SNR.
145 - Charee L. Peters 2013
Determination of the explosion type of supernova remnants (SNRs) can be challenging, as SNRs are hundreds to thousands of years old and supernovae (SNe) are classified based on spectral properties days after explosion. Previous studies of thermal X-r ay emission from Milky Way and Large Magellanic Cloud (LMC) SNRs have shown that Type Ia and core-collapse (CC) SNRs have statistically different symmetries, and thus these sources can be typed based on their X-ray morphologies. In this paper, we extend the same technique, a multipole expansion technique using power ratios, to infrared (IR) images of SNRs to test whether they can be typed using the symmetry of their warm dust emission as well. We analyzed archival Spitzer Space Telescope Multiband Imaging Photometer (MIPS) 24 micron observations of the previously used X-ray sample, and we find that the two classes of SNRs separate according to their IR morphologies. The Type Ia SNRs are statistically more circular and mirror symmetric than the CC SNRs, likely due to the different circumstellar environments and explosion geometries of the progenitors. Broadly, our work indicates that the IR emission retains information of the explosive origins of the SNR and offers a new method to type SNRs based on IR morphology.
144 - H. Sano , S. Yoshiike , Y. Yamane 2021
We carried out new CO($J$ = 2-1) observations toward the mixed-morphology supernova remnant (SNR) W49B with the Atacama Large Millimeter/submillimeter Array (ALMA). We found that CO clouds at $sim$10 km s$^{-1}$ show a good spatial correspondence wit h synchrotron radio continuum as well as an X-ray deformed shell. The bulk mass of molecular clouds accounts for the western part of the shell, not for the eastern shell where near-infrared H$_2$ emission is detected. The molecular clouds at $sim$10 km s$^{-1}$ show higher kinetic temperature of $sim$20-60 K, suggesting that modest shock-heating occurred. The expanding motion of the clouds with $Delta V sim$6 km s$^{-1}$ was formed by strong winds from the progenitor system. We argue that the barrel-like structure of Fe rich ejecta was possibly formed not only by an asymmetric explosion, but also by interactions with dense molecular clouds. We also found a negative correlation between the CO intensity and the electron temperature of recombining plasma, implying that the origin of the high-temperature recombining plasma in W49B can be understood as the thermal conduction model. The total energy of accelerated cosmic-ray protons $W_mathrm{p}$ is estimated to be $sim$$2times 10^{49}$ erg by adopting an averaged gas density of $sim$$650pm200$ cm$^{-3}$. The SNR age-$W_mathrm{p}$ diagram indicates that W49B shows one of the highest in-situ values of $W_mathrm{p}$ in the gamma-ray bright SNRs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا