ﻻ يوجد ملخص باللغة العربية
We review the major advances in understanding the morphologies and kinematics of supernova remnants (SNRs). Simulations of SN explosions have improved dramatically over the last few years, and SNRs can be used to test models through comparison of predictions with SNRs observed large-scale compositional and morphological properties as well as the three-dimensional kinematics of ejecta material. In particular, Cassiopeia A -- the youngest known core-collapse SNR in the Milky Way -- offers an up-close view of the complexity of these explosive events that cannot be resolved in distant, extragalactic sources. We summarize the progress in tying SNRs to their progenitors explosions through imaging and spectroscopic observations, and we discuss exciting future prospects for SNR studies, such as X-ray microcalorimeters
A supernova (SN) explosion drives stellar debris into the circumstellar material (CSM) filling a region on a scale of parsecs with X-ray emitting plasma. The velocities involved in supernova remnants (SNRs), thousands of km/s, can be directly measure
In a failed supernova, partial ejection of the progenitors outer envelope can occur due to weakening of the cores gravity by neutrino emission in the protoneutron star phase. We consider emission when this ejecta sweeps up the circumstellar material,
Supernova remnants (SNRs) are known to accelerate particles to relativistic energies, on account of their nonthermal emission. The observational progress from radio to gamma-ray observations reveals more and more morphological features that need to b
Supernova remnants are beautiful astronomical objects that are also of high scientific interest, because they provide insights into supernova explosion mechanisms, and because they are the likely sources of Galactic cosmic rays. X-ray observations ar
I outline the dynamical evolution of the shell remnants of supernovae (SNRs), from initial interaction of supernova ejecta with circumstellar material (CSM) through to the final dissolution of the remnant into the interstellar medium (ISM). Supernova