ﻻ يوجد ملخص باللغة العربية
All spacecraft attitude estimation methods are based on Wahbas optimization problem. This problem can be reduced to finding the largest eigenvalue and the corresponding eigenvector for Davenports $K$-matrix. Several iterative algorithms, such as QUEST and FOMA, were proposed, aiming at reducing the computational cost. But their computational time is unpredictable because the iteration number is not fixed and the solution is not accurate in theory. Recently, an analytical solution, ESOQ was suggested. The advantages of analytical solutions are that their computational time is fixed and the solution should be accurate in theory if there is no numerical error. In this paper, we propose a different analytical solution to the Wahbas problem. We use simple and easy to be verified examples to show that this method is numerically more stable than ESOQ, potentially faster than QUEST and FOMA. We also use extensive simulation test to support this claim.
A test particle in a noncoplanar orbit about a member of a binary system can undergo Kozai-Lidov oscillations in which tilt and eccentricity are exchanged. An initially circular highly inclined particle orbit can reach high eccentricity. We consider
This paper examines the Root solution of the Skorohod embedding problem given full marginals on some compact time interval. Our results are obtained by limiting arguments based on finitely-many marginals Root solution of Cox, Obloj and Touzi. Our mai
This paper characterizes the solution to a finite horizon min-max optimal control problem where the system is linear and discrete-time with control and state constraints, and the cost quadratic; the disturbance is negatively costed, as in the standar
We construct a theory in which the solution to the strong CP problem is an emergent property of the background of the dark matter in the Universe. The role of the axion degree of freedom is played by multi-body collective excitations similar to spin-
We give an explicit weak solution to the Schottky problem, in the spirit of Riemann and Schottky. For any genus $g$, we write down a collection of polynomials in genus $g$ theta constants, such that their common zero locus contains the locus of Jacob