ترغب بنشر مسار تعليمي؟ اضغط هنا

Alignments of galaxies within cosmic filaments from SDSS DR7

183   0   0.0 ( 0 )
 نشر من قبل Youcai Zhang
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using a sample of galaxy groups selected from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7), we examine the alignment between the orientation of galaxies and their surrounding large scale structure in the context of the cosmic web. The latter is quantified using the large-scale tidal field, reconstructed from the data using galaxy groups above a certain mass threshold. We find that the major axes of galaxies in filaments tend to be preferentially aligned with the directions of the filaments, while galaxies in sheets have their major axes preferentially aligned parallel to the plane of the sheets. The strength of this alignment signal is strongest for red, central galaxies, and in good agreement with that of dark matter halos in N-body simulations. This suggests that red, central galaxies are well aligned with their host halos, in quantitative agreement with previous studies based on the spatial distribution of satellite galaxies. There is a luminosity and mass dependence that brighter and more massive galaxies in filaments and sheets have stronger alignment signals. We also find that the orientation of galaxies is aligned with the eigenvector associated with the smallest eigenvalue of the tidal tensor. These observational results indicate that galaxy formation is affected by large-scale environments, and strongly suggests that galaxies are aligned with each other over scales comparable to those of sheets and filaments in the cosmic web.



قيم البحث

اقرأ أيضاً

Using a sample of spiral galaxies selected from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7) and Galaxy Zoo 2 (GZ2), we investigate the alignment of spin axes of spiral galaxies with their surrounding large scale structure, which is charact erized by the large-scale tidal field reconstructed from the data using galaxy groups above a certain mass threshold. We find that the spin axes of only have weak tendency to be aligned with (or perpendicular to) the intermediate (or minor) axis of the local tidal tensor. The signal is the strongest in a cluster environment where all the three eigenvalues of the local tidal tensor are positive. Compared to the alignments between halo spins and local tidal field obtained in N-body simulations, the above observational results are in best agreement with those for the spins of inner regions of halos, suggesting that the disk material traces the angular momentum of dark matter halos in the inner regions.
Based on galaxies from the Sloan Digital Sky Survey (SDSS) and subhalos in the corresponding reconstructed region from the constrained simulation of ELUCID, we study the alignment of central galaxies relative to their host groups in the group catalog , as well as the alignment relative to the corresponding subhalos in the ELUCID simulation. Galaxies in observation are matched to dark matter subhalos in the ELUCID simulation using a novel neighborhood abundance matching method. In observation, the major axes of galaxies are found to be preferentially aligned to the major axes of their host groups. There is a color dependence of galaxy-group alignment that red centrals have a stronger alignment along the major axes of their host groups than blue centrals. Combining galaxies in observation and subhalos in the ELUCID simulation, we also find that central galaxies have their major axes to be aligned to the major axes of their corresponding subhalos in the ELUCID simulation. We find that the galaxy-group and galaxy-subhalo alignment signals are stronger for galaxies in more massive halos. We find that the alignments between main subhalos and the SDSS matched subhalo systems in simulation are slightly stronger than the galaxy-group alignments in observation.
We have analyzed the spatial distribution of galaxies from the release of the Sloan Digital Sky Survey of galactic redshifts (SDSS DR7), applying the complete correlation function (conditional density), two-point conditional density (cylinder), and r adial density methods. Our analysis demonstrates that the conditional density has a power-law form for scales lengths 0.5-30 Mpc/h, with the power-law corresponding to the fractal dimension D = 2.2+-0.2; for scale lengths in excess of 30 Mpc/h, it enters an essentially flat regime, as is expected for a uniform distribution of galaxies. However, in the analysis applying the cylinder method, the power-law character with D = 2.0+-0.3 persists to scale lengths of 70 Mpc/h. The radial density method reveals inhomogeneities in the spatial distribution of galaxies on scales of 200 Mpc/h with a density contrast of two, confirming that translation invariance is violated in the distribution of galaxies to 300 Mpc/h, with the sampling depth of the SDSS galaxies being 600 Mpc/h.
The intrinsic alignments of galaxies, i.e., the correlation between galaxy shapes and their environment, are a major source of contamination for weak gravitational lensing surveys. Most studies of intrinsic alignments have so far focused on measuring and modelling the correlations of luminous red galaxies with galaxy positions or the filaments of the cosmic web. In this work, we investigate alignments around cosmic voids. We measure the intrinsic alignments of luminous red galaxies detected by the Sloan Digital Sky Survey around a sample of voids constructed from those same tracers and with radii in the ranges: $[20-30; 30-40; 40-50]$ $h^{-1}$ Mpc and in the redshift range $z=0.4-0.8$. We present fits to the measurements based on a linear model at large scales, and on a new model based on the void density profile inside the void and in its neighbourhood. We constrain the free scaling amplitude of our model at small scales, finding no significant alignment at $1sigma$ for either sample. We observe a deviation from the null hypothesis, at large scales, of 2$sigma$ for voids with radii between 20 and 30 $h^{-1}$ Mpc, and 1.5 $sigma$ for voids with radii between 30 and 40 $h^{-1}$ Mpc and constrain the amplitude of the model on these scales. We find no significant deviation at 1$sigma$ for larger voids. Our work is a first attempt at detecting intrinsic alignments around voids and provides a useful framework for their mitigation in future void lensing studies.
Cosmic strings are generically predicted in many extensions of the Standard Model of particle physics. We propose a new avenue for detecting cosmic strings through their effect on the filamentary structure in the cosmic web. Using cosmological simula tions of the density wake from a cosmic string, we examine a variety of filament structure probes. We show that the largest effect of the cosmic string is an overdensity in the filament distribution around the string wake. The signal from the overdensity is stronger at higher redshift, and more robust with a wider field. We analyze the spatial distribution of filaments from a publicly available catalog of filaments built from SDSS galaxies. With existing data, we find no evidence for the presence of a cosmic string wake with string tension parameter $Gmu$ above $5times 10^{-6}$. However, we project WFIRST will be able to detect a signal from such a wake at the $99%$ confidence level at redshift $z=2$, with significantly higher confidence and the possibility of probing lower tensions ($Gmu sim 10^{-6}$), at $z=10$. The sensitivity of this method is not competitive with constraints derived from the CMB. However, it provides an independent discovery channel at low redshift, which could be a smoking-gun in scenarios where the CMB bound can be weakened.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا