ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmic Filaments from Cosmic Strings

86   0   0.0 ( 0 )
 نشر من قبل Martin Fernandez
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cosmic strings are generically predicted in many extensions of the Standard Model of particle physics. We propose a new avenue for detecting cosmic strings through their effect on the filamentary structure in the cosmic web. Using cosmological simulations of the density wake from a cosmic string, we examine a variety of filament structure probes. We show that the largest effect of the cosmic string is an overdensity in the filament distribution around the string wake. The signal from the overdensity is stronger at higher redshift, and more robust with a wider field. We analyze the spatial distribution of filaments from a publicly available catalog of filaments built from SDSS galaxies. With existing data, we find no evidence for the presence of a cosmic string wake with string tension parameter $Gmu$ above $5times 10^{-6}$. However, we project WFIRST will be able to detect a signal from such a wake at the $99%$ confidence level at redshift $z=2$, with significantly higher confidence and the possibility of probing lower tensions ($Gmu sim 10^{-6}$), at $z=10$. The sensitivity of this method is not competitive with constraints derived from the CMB. However, it provides an independent discovery channel at low redshift, which could be a smoking-gun in scenarios where the CMB bound can be weakened.



قيم البحث

اقرأ أيضاً

We study the effect of weak lensing by cosmic (super-)strings on the higher-order statistics of the cosmic microwave background (CMB). A cosmic string segment is expected to cause weak lensing as well as an integrated Sachs-Wolfe (ISW) effect, the so -called Gott-Kaiser-Stebbins (GKS) effect, to the CMB temperature fluctuation, which are thus naturally cross-correlated. We point out that, in the presence of such a correlation, yet another kind of the post-recombination CMB temperature bispectra, the ISW-lensing bispectra, will arise in the form of products of the auto- and cross-power spectra. We first present an analytic method to calculate the autocorrelation of the temperature fluctuations induced by the strings, and the cross-correlation between the temperature fluctuation and the lensing potential both due to the string network. In our formulation, the evolution of the string network is assumed to be characterized by the simple analytic model, the velocity-dependent one scale model, and the intercommutation probability is properly incorporated in orderto characterize the possible superstringy nature. Furthermore, the obtained power spectra are dominated by the Poisson-distributed string segments, whose correlations are assumed to satisfy the simple relations. We then estimate the signal-to-noise ratios of the string-induced ISW-lensing bispectra and discuss the detectability of such CMB signals from the cosmic string network. It is found that in the case of the smaller string tension, $Gmull 10^{-7}$,, the ISW-lensing bispectrum induced by a cosmic string network can constrain the string-model parameters even more tightly than the purely GKS-induced bispectrum in the ongoing and future CMB observations on small scales.
Superconducting cosmic strings emit electromagnetic waves between the times of recombination and reionization. Hence, they have an effect on the global 21cm signal. We compute the resulting absorption features, focusing on strings with critical curre nt, study their dependence on the string tension $mu$, and compare with observational results. For string tensions in the range of $G mu = 10^{-10}$, where $G$ is Newtons gravitational constant, there is an interesting amplification of the two characteristic absorption features, one during the cosmic dawn, $z lesssim 30$, and the other during the cosmic dark age, $z sim 80$, the former being comparable in amplitude to what was observed by the EDGES experiment.
In this work we study the imprints of a primordial cosmic string on inflationary power spectrum. Cosmic string induces two distinct contributions on curvature perturbations power spectrum. The first type of correction respects the translation invaria nce while violating isotropy. This generates quadrupolar statistical anisotropy in CMB maps which is constrained by the Planck data. The second contribution breaks both homogeneity and isotropy, generating a dipolar power asymmetry in variance of temperature fluctuations with its amplitude falling on small scales. We show that the strongest constraint on the tension of string is obtained from the quadrupolar anisotropy and argue that the mass scale of underlying theory responsible for the formation of string can not be much higher than the GUT scale. The predictions of string for the diagonal and off-diagonal components of CMB angular power spectrum are presented.
Primordial black holes (PBHs) are of fundamental interest in cosmology and astrophysics, and have received much attention as a dark matter candidate and as a potential source of gravitational waves. One possible PBH formation mechanism is the gravita tional collapse of cosmic strings. Thus far, the entirety of the literature on PBH production from cosmic strings has focused on the collapse of (quasi)circular cosmic string loops, which make up only a tiny fraction of the cosmic loop population. We demonstrate here a novel PBH formation mechanism: the collapse of a small segment of cosmic string in the neighbourhood of a cusp. Using the hoop conjecture, we show that collapse is inevitable whenever a cusp appears on a macroscopically-large loop, forming a PBH whose rest mass is smaller than the mass of the loop by a factor of the dimensionless string tension squared, $(Gmu)^2$. Since cusps are generic features of cosmic string loops, and do not rely on finely-tuned loop configurations like circular collapse, this implies that cosmic strings produce PBHs in far greater numbers than has previously been recognised. The resulting PBHs are highly spinning and boosted to ultrarelativistic velocities; they populate a unique region of the BH mass-spin parameter space, and are therefore a smoking gun observational signature of cosmic strings. We derive new constraints on $Gmu$ from the evaporation of cusp-collapse PBHs, and update existing constraints on $Gmu$ from gravitational-wave searches.
Cosmic string networks offer one of the best prospects for detection of cosmological gravitational waves (GWs). The combined incoherent GW emission of a large number of string loops leads to a stochastic GW background (SGWB), which encodes the proper ties of the string network. In this paper we analyze the ability of the Laser Interferometer Space Antenna (LISA) to measure this background, considering leading models of the string networks. We find that LISA will be able to probe cosmic strings with tensions $Gmu gtrsim mathcal{O}(10^{-17})$, improving by about $6$ orders of magnitude current pulsar timing arrays (PTA) constraints, and potentially $3$ orders of magnitude with respect to expected constraints from next generation PTA observatories. We include in our analysis possible modifications of the SGWB spectrum due to different hypotheses regarding cosmic history and the underlying physics of the string network. These include possible modifications in the SGWB spectrum due to changes in the number of relativistic degrees of freedom in the early Universe, the presence of a non-standard equation of state before the onset of radiation domination, or changes to the network dynamics due to a string inter-commutation probability less than unity. In the event of a detection, LISAs frequency band is well-positioned to probe such cosmic events. Our results constitute a thorough exploration of the cosmic string science that will be accessible to LISA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا