ﻻ يوجد ملخص باللغة العربية
In this paper, we focus on the construction of high order volume preserving in- tegrators for divergence-free vector fields: the monomial basis, the exponential basis and tensor product of the monomial and the exponential basis. We first prove that the commutators of elementary divergence-free vector fields (EDFVF) of those three kinds are still divergence-free vector fields of the same kind. Assuming then there is only diagonal part of divergence-free vector field of the monomial basis, for those three kinds of divergence-free vector fields, we construct high order volume-preserving inte- grators using the multi-commutators for EDFVFs. Moreover, we consider the ordering of the EDFVFs and their commutators to reduce the error of the schemes, showing by numerical tests that the strategy in [9] works very well.
A novel class of high-order linearly implicit energy-preserving exponential integrators are proposed for the nonlinear Schrodinger equation. We firstly done that the original equation is reformulated into a new form with a modified quadratic energy b
We show that applying any deterministic B-series method of order $p_d$ with a random step size to single integrand SDEs gives a numerical method converging in the mean-square and weak sense with order $lfloor p_d/2rfloor$.As an application, we derive
The paper deals with numerical discretizations of separable nonlinear Hamiltonian systems with additive noise. For such problems, the expected value of the total energy, along the exact solution, drifts linearly with time. We present and analyze a ti
We perform a numerical analysis of a class of randomly perturbed {H}amiltonian systems and {P}oisson systems. For the considered additive noise perturbation of such systems, we show the long time behavior of the energy and quadratic Casimirs for the
The goal of this paper is to develop energy-preserving variational integrators for time-dependent mechanical systems with forcing. We first present the Lagrange-dAlembert principle in the extended Lagrangian mechanics framework and derive the extende