ﻻ يوجد ملخص باللغة العربية
The goal of this paper is to develop energy-preserving variational integrators for time-dependent mechanical systems with forcing. We first present the Lagrange-dAlembert principle in the extended Lagrangian mechanics framework and derive the extended forced Euler-Lagrange equations in continuous-time. We then obtain the extended forced discrete Euler-Lagrange equations using the extended discrete mechanics framework and derive adaptive time step variational integrators for time-dependent Lagrangian systems with forcing. We consider two numerical examples to study the numerical performance of energy-preserving variational integrators. First, we consider the example of a nonlinear conservative system to illustrate the advantages of using adaptive time-stepping in variational integrators. We show a trade-off between energy-preserving performance and accurate discrete trajectories while choosing an initial time step. In addition, we demonstrate how the implicit equations become more ill-conditioned as the adaptive time step increases through a condition number analysis. As a second example, we numerically simulate a damped harmonic oscillator using the adaptive time step variational integrator framework. The adaptive time step increases monotonically for the dissipative system leading to unexpected energy behavior.
A fixed time-step variational integrator cannot preserve momentum, energy, and symplectic form simultaneously for nonintegrable systems. This barrier can be overcome by treating time as a discrete dynamic variable and deriving adaptive time-step vari
The paper deals with numerical discretizations of separable nonlinear Hamiltonian systems with additive noise. For such problems, the expected value of the total energy, along the exact solution, drifts linearly with time. We present and analyze a ti
We perform a numerical analysis of a class of randomly perturbed {H}amiltonian systems and {P}oisson systems. For the considered additive noise perturbation of such systems, we show the long time behavior of the energy and quadratic Casimirs for the
We present a variational formulation for the Navier-Stokes-Fourier system based on a free energy Lagrangian. This formulation is a systematic infinite dimensional extension of the variational approach to the thermodynamics of discrete systems using t
A novel class of high-order linearly implicit energy-preserving exponential integrators are proposed for the nonlinear Schrodinger equation. We firstly done that the original equation is reformulated into a new form with a modified quadratic energy b