ﻻ يوجد ملخص باللغة العربية
We observed the 2012-2013 superoutburst of the newly identified transient SSS J122221.7-311523 and found that this object showed successive two superoutbursts. Superhumps grew in amplitude during the second superoutburst and showed a characteristic pattern of period change reflecting the growth of the superhump. Assuming that the periods of superhumps during the growing stage [0.07721(1) d] and post-superoutburst stage [0.07673(3) d], represent the dynamical precession rates at the radius of the 3:1 resonance and the radius immediately after the superoutburst, respectively, we found that this object has a very small mass ratio q=M2/M1 < 0.05. The possible orbital period from quiescent data suggests q=0.045, one of the smallest among hydrogen-rich cataclysmic variables. The long orbital period and low q make this object a perfect candidate for a period bouncer. We suggest that the peculiar pattern of double superoutburst is a result of a low q and may be characteristic to period bouncers.
We report extensive 3-yr multiwavelength observations of the WZ Sge-type dwarf nova SSS J122221.7-311525 during its unusual double superoutburst, the following decline and in quiescence. The second segment of the superoutburst had a long duration of
We report the discovery of a rare close binary system, SMSS J160639.78-100010.7, comprised of a magnetic white dwarf with a field of about 30 MG and a brown dwarf. We measured an orbital period of 92 min which is consistent with the photometric perio
[Abridged] We present more than 4 years of Swift X-ray observations of the 2013 superoutburst, subsequent decline and quiescence of the WZ Sge-type dwarf nova SSS J122221.7-311525 (SSS122222) from 6 days after discovery. Only a handful of WZ Sge-type
We report on photometric observations of two dwarf novae, OT J075418.7+381225 and OT J230425.8+062546, which underwent superoutburst in 2013 (OT J075418) and in 2011 (OT J230425). Their mean period of the superhump was 0.0722403(26) d (OT J074518) an
We examine the relationship between superoutburst duration $t_{rm dur}$ and orbital period $P_{rm orb}$ in AM CVn ultra-compact binary systems. We show that the previously determined steep relation derived by Levitan et al (2015) was strongly influ