ترغب بنشر مسار تعليمي؟ اضغط هنا

The remarkable outburst of the highly evolved post-period-minimum dwarf nova SSS J122221.7-311525

79   0   0.0 ( 0 )
 نشر من قبل Vitaly Neustroev
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report extensive 3-yr multiwavelength observations of the WZ Sge-type dwarf nova SSS J122221.7-311525 during its unusual double superoutburst, the following decline and in quiescence. The second segment of the superoutburst had a long duration of 33 d and a very gentle decline with a rate of 0.02 mag/d, and it displayed an extended post-outburst decline lasting at least 500 d. Simultaneously with the start of the rapid fading from the superoutburst plateau, the system showed the appearance of a strong near-infrared excess resulting in very red colours, which reached extreme values (B-I~1.4) about 20 d later. The colours then became bluer again, but it took at least 250 d to acquire a stable level. Superhumps were clearly visible in the light curve from our very first time-resolved observations until at least 420 d after the rapid fading from the superoutburst. The spectroscopic and photometric data revealed an orbital period of 109.80 min and a fractional superhump period excess <0.8 per cent, indicating a very low mass ratio q<0.045. With such a small mass ratio the donor mass should be below the hydrogen-burning minimum mass limit. The observed infrared flux in quiescence is indeed much lower than is expected from a cataclysmic variable with a near-main-sequence donor star. This strongly suggests a brown-dwarf-like nature for the donor and that SSS J122221.7-311525 has already evolved away from the period minimum towards longer periods, with the donor now extremely dim.



قيم البحث

اقرأ أيضاً

101 - U. Munari , S. Moretti , A. Maitan 2020
Nova Per 2018 (= V392 Per) halted the decline from maximum when it was 2mag brighter than quiescence and since 2019 has been stable at such a plateau. The ejecta have already fully diluted into the interstellar space. We obtained BVRIgrizY photometry and optical spectroscopy of V392 Per during the plateau phase and compared it with equivalent data gathered prior to the nova outburst. We find the companion star to be a G9 IV/III and the orbital period to be 3.4118 days, making V392 Per the longest known period for a classical nova. The location of V392 Per on the theoretical isochrones is intermediate between that of classical novae and novae erupting within symbiotic binaries, in a sense bridging the gap. The reddening is derived to be E(B-V)=0.72 and the fitting to isochrones returns a 3.6 Gyr age for the system and 1.35 Msun, 5.3 Rsun, and 15 Lsun for the companion. The huge Ne overabundance in the ejecta and the very fast decline from nova maximum both point to a massive white dwarf (M(WD) >= 1.1-1.2 Msun). The system is viewed close to pole-on conditions and the current plateau phase is caused by irradiation of the CS by the WD still burning at the surface.
We report on a superoutburst of a WZ Sge-type dwarf nova (DN), ASASSN-15po. The light curve showed the main superoutburst and multiple rebrightenings. In this outburst, we observed early superhumps and growing (stage A) superhumps with periods of 0.0 50454(2) and 0.051809(13) d, respectively. We estimated that the mass ratio of secondary to primary ($q$) is 0.0699(8) by using $P_{rm orb}$ and a superhump period $P_{rm SH}$ of stage A. ASASSN-15po [$P_{rm orb} sim$ 72.6 min] is the first DN with the orbital period between 67--76 min. Although the theoretical predicted period minimum $P_{rm min}$ of hydrogen-rich cataclysmic variables (CVs) is about 65--70 min, the observational cut-off of the orbital period distribution at 80 min implies that the period minimum is about 82 min, and the value is widely accepted. We suggest the following four possibilities: the object is (1) a theoretical period minimum object (2) a binary with a evolved secondary (3) a binary with a metal-poor (Popullation II) seconday (4) a binary which was born with a brown-dwarf donor below the period minimum.
[Abridged] We present more than 4 years of Swift X-ray observations of the 2013 superoutburst, subsequent decline and quiescence of the WZ Sge-type dwarf nova SSS J122221.7-311525 (SSS122222) from 6 days after discovery. Only a handful of WZ Sge-type dwarf novae have been observed in X-rays, and until recently GW Lib was the only binary of this type with complete coverage of an X-ray light curve throughout a superoutburst. We collected extensive X-ray data of a second such system to understand the extent to which the unexpected properties of GW Lib are common to the WZ Sge class. We analysed the X-ray light curve and compared it with the behaviour of superhumps which were detected in the optical light curve. We also performed spectral analysis of the data. The results were compared with the properties of GW Lib, for which new X-ray observations were also obtained. SSS122222 was variable and around five times brighter in 0.3-10 keV X-rays during the superoutburst than in quiescence, mainly because of a significant strengthening of a high-energy component of the X-ray spectrum. The post-outburst decline of the X-ray flux lasted at least 500 d. The data show no evidence of the expected optically thick boundary layer in the system during the outburst. SSS122222 also exhibited a sudden X-ray flux change in the middle of the superoutburst, which occurred exactly at the time of the superhump stage transition. A similar X-ray behaviour was also detected in GW Lib. This result demonstrates a relationship between the outer disc and the white dwarf boundary layer for the first time, and suggests that models for accretion discs in high mass ratio accreting binaries are currently incomplete. The very long decline to X-ray quiescence is also in strong contrast to the expectation of low viscosity in the disc after outburst.
94 - Taichi Kato 2013
We observed the 2012-2013 superoutburst of the newly identified transient SSS J122221.7-311523 and found that this object showed successive two superoutbursts. Superhumps grew in amplitude during the second superoutburst and showed a characteristic p attern of period change reflecting the growth of the superhump. Assuming that the periods of superhumps during the growing stage [0.07721(1) d] and post-superoutburst stage [0.07673(3) d], represent the dynamical precession rates at the radius of the 3:1 resonance and the radius immediately after the superoutburst, respectively, we found that this object has a very small mass ratio q=M2/M1 < 0.05. The possible orbital period from quiescent data suggests q=0.045, one of the smallest among hydrogen-rich cataclysmic variables. The long orbital period and low q make this object a perfect candidate for a period bouncer. We suggest that the peculiar pattern of double superoutburst is a result of a low q and may be characteristic to period bouncers.
We present a detailed study of the 2019 outburst of the cataclysmic variable V1047 Cen, which hosted a classical nova eruption in 2005. The peculiar outburst occurred 14 years after the classical nova event, lasted for more than 400 days, and reached an amplitude of around 6 magnitudes in the optical. Early spectral follow-up revealed what could be a dwarf nova (accretion disk instability) outburst in a classical nova system. However, the outburst duration, high velocity ($>$2000 km s$^{-1}$) features in the optical line profiles, luminous optical emission, and the presence of prominent long-lasting radio emission, together suggest a phenomenon more exotic and energetic than a dwarf nova outburst. There are striking similarities between this V1047 Cen outburst and those of combination novae in classical symbiotic stars. We suggest that the outburst may have started as a dwarf nova that led to the accretion of a massive disk, which in turn triggered enhanced nuclear shell burning on the white dwarf and eventually led to generation of a wind/outflow. From optical photometry we find a bf{possible} orbital period of 8.36 days, which supports the combination nova scenario and makes the system an intermediate case between typical cataclysmic variables and classical symbiotic binaries. If true, such a phenomenon would be the first of its kind to occur in a system that has undergone a classical nova eruption and is intermediate between cataclysmic variables and symbiotic binaries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا