ﻻ يوجد ملخص باللغة العربية
We study the conformational properties of charged polymers in a solvent in the presence of structural obstacles correlated according to a power law $sim x^{-a}$. We work within the continuous representation of a model of linear chain considered as a random sequence of charges $q_i=pm q_0$. Such a model captures the properties of polyampholytes -- heteropolymers comprising both positively and negatively charged monomers. We apply the direct polymer renormalization scheme and analyze the scaling behavior of charged polymers up to the first order of an $epsilon=6-d$, $delta=4-a$-expansion.
Freezing in charged porous media can induce significant pressure and cause damage to tissues and functional materials. We formulate a thermodynamically consistent theory to model freezing phenomena inside charged heterogeneous porous space. Two regim
We perform Brownian dynamics simulations of active stiff polymers undergoing run-reverse dynamics, and so mimic bacterial swimming, in porous media. In accord with recent experiments of emph{Escherichia coli}, the polymer dynamics are characterized b
We report studies of the frequency dependent shear modulus, $G^*(omega)=G(omega)+iG(omega)$, of the liquid crystal octylcyanobiphenyl (8CB) confined in a colloidal aerosil gel. With the onset of smectic order, $G$ grows approximately linearly with de
The flow and deformation of macromolecules is ubiquitous in nature and industry, and an understanding of this phenomenon at both macroscopic and microscopic length scales is of fundamental and practical importance. Here we present the formulation of
Porous media with hierarchical structures are commonly encountered in both natural and synthetic materials, e.g., fractured rock formations, porous electrodes and fibrous materials, which generally consist of two or more distinguishable levels of por