ترغب بنشر مسار تعليمي؟ اضغط هنا

Basic sequences and spaceability in $ell_p$ spaces

154   0   0.0 ( 0 )
 نشر من قبل Juan Seoane-Sepulveda
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $X$ be a sequence space and denote by $Z(X)$ the subset of $X$ formed by sequences having only a finite number of zero coordinates. We study algebraic properties of $Z(X)$ and show (among other results) that (for $p in [1,infty]$) $Z(ell_p)$ does not contain infinite dimensional closed subspaces. This solves an open question originally posed by R. M. Aron and V. I. Gurariy in 2003 on the linear structure of $Z(ell_infty)$. In addition to this, we also give a thorough analysis of the existing algebraic structures within the set $X setminus Z(X)$ and its algebraic genericity.



قيم البحث

اقرأ أيضاً

109 - Pandelis Dodos 2008
We study the problem of the existence of unconditional basic sequences in Banach spaces of high density. We show, in particular, the relative consistency with GCH of the statement that every Banach space of density $aleph_omega$ contains an unconditional basic sequence.
We study Banach spaces X with a strongly asymptotic l_p basis (any disjointly supported finite set of vectors far enough out with respect to the basis behaves like l_p) which are minimal (X embeds into every infinite dimensional subspace). In particular such spaces embed into l_p.
We study density requirements on a given Banach space that guarantee the existence of subsymmetric basic sequences by extending Tsirelsons well-known space to larger index sets. We prove that for every cardinal $kappa$ smaller than the first Mahlo ca rdinal there is a reflexive Banach space of density $kappa$ without subsymmetric basic sequences. As for Tsirelsons space, our construction is based on the existence of a rich collection of homogeneous families on large index sets for which one can estimate the complexity on any given infinite set. This is used to describe detailedly the asymptotic structure of the spaces. The collections of families are of independent interest and their existence is proved inductively. The fundamental stepping up argument is the analysis of such collections of families on trees.
We introduce the concept of {em maximal lineability cardinal number}, $mL(M)$, of a subset $M$ of a topological vector space and study its relation to the cardinal numbers known as: additivity $A(M)$, homogeneous lineability $HL(M)$, and lineability $LL(M)$ of $M$. In particular, we will describe, in terms of $LL$, the lineability and spaceability of the families of the following Darboux-like functions on $real^n$, $nge 1$: extendable, Jones, and almost continuous functions.
We study the generic behavior of the method of successive approximations for set-valued mappings in Banach spaces. We consider, in particular, the case of those set-valued mappings which are defined by pairs of nonexpansive mappings and give a positi ve answer to a question raised by Francesco S. de Blasi.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا