ﻻ يوجد ملخص باللغة العربية
In order to generalize the well-known spanwise-oscillating-wall technique for drag reduction, non-sinusoidal oscillations of a solid wall are considered as a means to alter the skin-friction drag in a turbulent channel flow. A series of Direct Numerical Simulations is conducted to evaluate the control performance of nine different temporal waveforms, in addition to the usual sinusoid, systematically changing the wave amplitude and the period for each waveform. The turbulent average spanwise motion is found to coincide with the laminar Stokes solution that is constructed, for the generic waveform, through harmonic superposition. This allows us to define and compute, for each waveform, a new penetration depth of the Stokes layer which correlates with the amount of turbulent drag reduction, and eventually to predict both turbulent drag reduction and net energy saving rate for arbitrary waveforms. Among the waveforms considered, the maximum net energy saving rate is obtained by the sinusoidal wave at its optimal amplitude and period. However, the sinusoid is not the best waveform at every point in the parameter space. Our predictive tool offers simple guidelines to design waveforms that outperform the sinusoid for given (suboptimal) amplitude and period of oscillation. This is potentially interesting in view of applications, where physical limitations often preclude the actuator to reach its optimal operating conditions.
Highly turbulent Taylor-Couette flow with spanwise-varying roughness is investigated experimentally and numerically (direct numerical simulations (DNS) with an immersed boundary method (IBM)) to determine the effects of the spacing and axial width $s
Turbulence is omnipresent in Nature and technology, governing the transport of heat, mass, and momentum on multiple scales. For real-world applications of wall-bounded turbulence, the underlying surfaces are virtually always rough; yet characterizing
Within wall turbulence, there is a sublayer where the mean velocity and the variance of velocity fluctuations vary logarithmically with the height from the wall. This logarithmic scaling is also known for the mean concentration of a passive scalar. B
A new velocity scale is derived that yields a Reynolds number independent profile for the streamwise turbulent fluctuations in the near-wall region of wall bounded flows for $y^+<25$. The scaling demonstrates the important role played by the wall she
Despite the nonlinear nature of turbulence, there is evidence that part of the energy-transfer mechanisms sustaining wall turbulence can be ascribed to linear processes. The different scenarios stem from linear stability theory and comprise exponenti