ترغب بنشر مسار تعليمي؟ اضغط هنا

Wall roughness induces asymptotic ultimate turbulence

235   0   0.0 ( 0 )
 نشر من قبل Xiaojue Zhu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Turbulence is omnipresent in Nature and technology, governing the transport of heat, mass, and momentum on multiple scales. For real-world applications of wall-bounded turbulence, the underlying surfaces are virtually always rough; yet characterizing and understanding the effects of wall roughness for turbulence remains a challenge, especially for rotating and thermally driven turbulence. By combining extensive experiments and numerical simulations, here, taking as example the paradigmatic Taylor-Couette system (the closed flow between two independently rotating coaxial cylinders), we show how wall roughness greatly enhances the overall transport properties and the corresponding scaling exponents. If only one of the walls is rough, we reveal that the bulk velocity is slaved to the rough side, due to the much stronger coupling to that wall by the detaching flow structures. If both walls are rough, the viscosity dependence is thoroughly eliminated in the boundary layers and we thus achieve asymptotic ultimate turbulence, i.e. the upper limit of transport, whose existence had been predicted by Robert Kraichnan in 1962 (Phys. Fluids {bf 5}, 1374 (1962)) and in which the scalings laws can be extrapolated to arbitrarily large Reynolds numbers.



قيم البحث

اقرأ أيضاً

We experimentally study the influence of wall roughness on bubble drag reduction in turbulent Taylor-Couette flow, i.e. the flow between two concentric, independently rotating cylinders. We measure the drag in the system for the cases with and withou t air, and add roughness by installing transverse ribs on either one or both of the cylinders. For the smooth wall case (no ribs) and the case of ribs on the inner cylinder only, we observe strong drag reduction up to $DR=33%$ and $DR=23%$, respectively, for a void fraction of $alpha=6%$. However, with ribs mounted on both cylinders or on the outer cylinder only, the drag reduction is weak, less than $DR=11%$, and thus quite close to the trivial effect of reduced effective density. Flow visualizations show that stable turbulent Taylor vortices --- large scale vortical structures --- are induced in these two cases, i.e. the cases with ribs on the outer cylinder. These strong secondary flows move the bubbles away from the boundary layer, making the bubbles less effective than what had previously been observed for the smooth-wall case. Measurements with counter-rotating smooth cylinders, a regime in which pronounced Taylor rolls are also induced, confirm that it is really the Taylor vortices that weaken the bubble drag reduction mechanism. Our findings show that, although bubble drag reduction can indeed be effective for smooth walls, its effect can be spoiled by e.g. biofouling and omnipresent wall roughness, as the roughness can induce strong secondary flows.
A new velocity scale is derived that yields a Reynolds number independent profile for the streamwise turbulent fluctuations in the near-wall region of wall bounded flows for $y^+<25$. The scaling demonstrates the important role played by the wall she ar stress fluctuations and how the large eddies determine the Reynolds number dependence of the near-wall turbulence distribution.
Highly turbulent Taylor-Couette flow with spanwise-varying roughness is investigated experimentally and numerically (direct numerical simulations (DNS) with an immersed boundary method (IBM)) to determine the effects of the spacing and axial width $s $ of the spanwise varying roughness on the total drag and {on} the flow structures. We apply sandgrain roughness, in the form of alternating {rough and smooth} bands to the inner cylinder. Numerically, the Taylor number is $mathcal{O}(10^9)$ and the roughness width is varied between $0.47leq tilde{s}=s/d leq 1.23$, where $d$ is the gap width. Experimentally, we explore $text{Ta}=mathcal{O}(10^{12})$ and $0.61leq tilde s leq 3.74$. For both approaches the radius ratio is fixed at $eta=r_i/r_o = 0.716$, with $r_i$ and $r_o$ the radius of the inner and outer cylinder respectively. We present how the global transport properties and the local flow structures depend on the boundary conditions set by the roughness spacing $tilde{s}$. Both numerically and experimentally, we find a maximum in the angular momentum transport as function of $tilde s$. This can be atributed to the re-arrangement of the large-scale structures triggered by the presence of the rough stripes, leading to correspondingly large-scale turbulent vortices.
This paper reviews results from the study of wall-bounded turbulent flows using statistical state dynamics (SSD) that demonstrate the benefits of adopting this perspective for understanding turbulence in wall-bounded shear flows. The SSD approach use d in this work employs a second-order closure which isolates the interaction between the streamwise mean and the equivalent of the perturbation covariance. This closure restricts nonlinearity in the SSD to that explicitly retained in the streamwise constant mean together with nonlinear interactions between the mean and the perturbation covariance. This dynamical restriction, in which explicit perturbation-perturbation nonlinearity is removed from the perturbation equation, results in a simplified dynamics referred to as the restricted nonlinear (RNL) dynamics. RNL systems in which an ensemble of a finite number of realizations of the perturbation equation share the same mean flow provide tractable approximations to the equivalently infinite ensemble RNL system. The infinite ensemble system, referred to as the S3T, introduces new analysis tools for studying turbulence. The RNL with a single ensemble member can be alternatively viewed as a realization of RNL dynamics. RNL systems provide computationally efficient means to approximate the SSD, producing self-sustaining turbulence exhibiting qualitative features similar to those observed in direct numerical simulations (DNS) despite its greatly simplified dynamics. Finally, we show that RNL turbulence can be supported by as few as a single streamwise varying component interacting with the streamwise constant mean flow and that judicious selection of this truncated support, or band-limiting, can be used to improve quantitative accuracy of RNL turbulence. The results suggest that the SSD approach provides new analytical and computational tools allowing new insights into wall-turbulence.
Progress in roughness research, mapping any given roughness geometry to its fluid dynamic behaviour, has been hampered by the lack of accurate and direct measurements of skin-friction drag, especially in open systems. The Taylor--Couette (TC) system has the benefit of being a closed system, but its potential for characterizing irregular, realistic, 3-D roughness has not been previously considered in depth. Here, we present direct numerical simulations (DNSs) of TC turbulence with sand grain roughness mounted on the inner cylinder. The model proposed by Scotti (textit{Phys. Fluids}, vol. 18, 031701, 2006) has been improved to simulate a random rough surface of monodisperse sand grains, which is characterized by the equivalent sand grain height $k_s$. Taylor numbers range from $Ta = 1.0times 10^7$(corresponding to $Re_tau = 82$) to $Ta = 1.0times 10^9$($Re_tau = 635$). We focus on the influence of the roughness height $k_s^+$ in the transitionally rough regime, through simulations of TC with rough surfaces, ranging from $k_s^+=5$ up to $k_s^+ = 92$, where the superscript `$+$ indicates non-dimensionalization in viscous units. We find that the downwards shift of the logarithmic layer, due to transitionally rough sand grains exhibits remarkably similar behavior to that of the Nikuradse (textit{VDI-Forschungsheft} 361, 1933) data of sand grain roughness in pipe flow, regardless of the Taylor number dependent constants of the logarithmic layer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا