ﻻ يوجد ملخص باللغة العربية
Starting from the orthogonal polynomial expansion of a function $F$ corresponding to a finite positive Borel measure with infinite compact support, we study the asymptotic behavior of certain associated rational functions (Pad{e}-orthogonal approximants). We obtain both direct and inverse results relating the convergence of the poles of the approximants and the singularities of $F.$ Thereby, we obtain analogues of the theorems of E. Fabry, R. de Montessus de Ballore, V.I. Buslaev, and S.P. Suetin.
We give necessary and sufficient conditions for the convergence with geometric rate of the denominators of linear Pade-orthogonal approximants corresponding to a measure supported on a general compact set in the complex plane. Thereby, we obtain an a
Given a vector function ${bf F}=(F_1,ldots,F_d),$ analytic on a neighborhood of some compact subset $E$ of the complex plane with simply connected complement, we define a sequence of vector rational functions with common denominator in terms of the e
We consider row sequences of vector valued Pad{e}-Faber approximants (simultaneous Pad{e}-Faber approximants) and prove a Montessus de Ballore type theorem.
Let $f$ be a power series with positive radius of convergence. In the present paper, we study the phenomenon of overconvergence of sequences of classical Pade approximants pi{n,m_n} associated with f, where m(n)<=m(n+1)<=m(n) and m(n) = o(n/log n), r
Given a system of functions f = (f1, . . . , fd) analytic on a neighborhood of some compact subset E of the complex plane, we give necessary and sufficient conditions for the convergence with geometric rate of the common denominators of multipoint He