ﻻ يوجد ملخص باللغة العربية
Let $f$ be a power series with positive radius of convergence. In the present paper, we study the phenomenon of overconvergence of sequences of classical Pade approximants pi{n,m_n} associated with f, where m(n)<=m(n+1)<=m(n) and m(n) = o(n/log n), resp. m(n) = 0(n) as n is going to infiity. We extend classical results by J. Hadamard and A. A. Ostrowski related to overconvergent Taylor polynomials, as well as results by G. Lopez Lagomasino and A. Fernandes Infante concerning overconvergent subsequences of a fixed row of the Pade table.
Starting from the orthogonal polynomial expansion of a function $F$ corresponding to a finite positive Borel measure with infinite compact support, we study the asymptotic behavior of certain associated rational functions (Pad{e}-orthogonal approxima
Given a vector function ${bf F}=(F_1,ldots,F_d),$ analytic on a neighborhood of some compact subset $E$ of the complex plane with simply connected complement, we define a sequence of vector rational functions with common denominator in terms of the e
Given a system of functions f = (f1, . . . , fd) analytic on a neighborhood of some compact subset E of the complex plane, we give necessary and sufficient conditions for the convergence with geometric rate of the common denominators of multipoint He
Given a regular compact set $E$ in the complex plane, a unit measure $mu$ supported by $partial E,$ a triangular point set $beta := {{beta_{n,k}}_{k=1}^n}_{n=1}^{infty},betasubset partial E$ and a function $f$, holomorphic on $E$, let $pi_{n,m}^{beta
Analytic approximations to the ground-state energy of closed-shell quantum dots (number of electrons from 2 to 210) are presented in the form of two-point Pade approximants. These Pade approximants are constructed from the small- and large-density li