ﻻ يوجد ملخص باللغة العربية
Let $A$ be a compact $d$-rectifiable set embedded in Euclidean space $RR^p$, $dle p$. For a given continuous distribution $sigma(x)$ with respect to $d$-dimensional Hausdorff measure on $A$, our earlier results provided a method for generating $N$-point configurations on $A$ that have asymptotic distribution $sigma (x)$ as $Nto infty$; moreover such configurations are quasi-uniform in the sense that the ratio of the covering radius to the separation distance is bounded independent of $N$. The method is based upon minimizing the energy of $N$ particles constrained to $A$ interacting via a weighted power law potential $w(x,y)|x-y|^{-s}$, where $s>d$ is a fixed parameter and $w(x,y)=left(sigma(x)sigma(y)right)^{-({s}/{2d})}$. Here we show that one can generate points on $A$ with the above mentioned properties keeping in the energy sums only those pairs of points that are located at a distance of at most $r_N=C_N N^{-1/d}$ from each other, with $C_N$ being a positive sequence tending to infinity arbitrarily slowly. To do this we minimize the energy with respect to a varying truncated weight $v_N(x,y)=Phi(left|x-yright|/r_N)w(x,y)$, where $Phi:(0,infty)to [0,infty)$ is a bounded function with $Phi(t)=0$, $tgeq 1$, and $lim_{tto 0^+}Phi(t)=1$. This reduces, under appropriate assumptions, the complexity of generating $N$ point `low energy discretizations to order $N C_N^d$ computations.
For a compact set A in Euclidean space we consider the asymptotic behavior of optimal (and near optimal) N-point configurations that minimize the Riesz s-energy (corresponding to the potential 1/t^s) over all N-point subsets of A, where s>0. For a la
Let $Lambda$ be a lattice in ${bf R}^d$ with positive co-volume. Among $Lambda$-periodic $N$-point configurations, we consider the minimal renormalized Riesz $s$-energy $mathcal{E}_{s,Lambda}(N)$. While the dominant term in the asymptotic expansion o
We investigate the minimal Riesz s-energy problem for positive measures on the d-dimensional unit sphere S^d in the presence of an external field induced by a point charge, and more generally by a line charge. The model interaction is that of Riesz p
We survey known results and present estimates and conjectures for the next-order term in the asymptotics of the optimal logarithmic energy and Riesz $s$-energy of $N$ points on the unit sphere in $mathbb{R}^{d+1}$, $dgeq 1$. The conjectures are based
Utilizing frameworks developed by Delsarte, Yudin and Levenshtein, we deduce linear programming lower bounds (as $Nto infty$) for the Riesz energy of $N$-point configurations on the $d$-dimensional unit sphere in the so-called hypersingular case; i.e