ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymptotic Linear Programming Lower Bounds for the Energy of Minimizing Riesz and Gauss Configurations

65   0   0.0 ( 0 )
 نشر من قبل Douglas Hardin
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Utilizing frameworks developed by Delsarte, Yudin and Levenshtein, we deduce linear programming lower bounds (as $Nto infty$) for the Riesz energy of $N$-point configurations on the $d$-dimensional unit sphere in the so-called hypersingular case; i.e, for non-integrable Riesz kernels of the form $|x-y|^{-s}$ with $s>d.$ As a consequence, we immediately get (thanks to the Poppy-seed bagel theorem) lower estimates for the large $N$ limits of minimal hypersingular Riesz energy on compact $d$-rectifiable sets. Furthermore, for the Gaussian potential $exp(-alpha|x-y|^2)$ on $mathbb{R}^p,$ we obtain lower bounds for the energy of infinite configurations having a prescribed density.



قيم البحث

اقرأ أيضاً

One manifestation of quantum resonances is a large sojourn time, or autocorrelation, for states which are initially localized. We elaborate on Lavines time-energy uncertainty principle and give an estimate on the sojourn time. For the case of perturb ed embedded eigenstates the bound is explicit and involves Fermis Golden Rule. It is valid for a very general class of systems. We illustrate the theory by applications to resonances for time dependent systems including the AC Stark effect as well as multistate systems.
76 - D.P. Hardin , E.B. Saff 2003
For a compact set A in Euclidean space we consider the asymptotic behavior of optimal (and near optimal) N-point configurations that minimize the Riesz s-energy (corresponding to the potential 1/t^s) over all N-point subsets of A, where s>0. For a la rge class of manifolds A having finite, positive d-dimensional Hausdorff measure, we show that such minimizing configurations have asymptotic limit distribution (as N tends to infinity with s fixed) equal to d-dimensional Hausdorff measure whenever s>d or s=d. In the latter case we obtain an explicit formula for the dominant term in the minimum energy. Our results are new even for the case of the d-dimensional sphere.
118 - J. S. Brauchart , D. P. Hardin , 2012
We survey known results and present estimates and conjectures for the next-order term in the asymptotics of the optimal logarithmic energy and Riesz $s$-energy of $N$ points on the unit sphere in $mathbb{R}^{d+1}$, $dgeq 1$. The conjectures are based on analytic continuation assumptions (with respect to $s$) for the coefficients in the asymptotic expansion (as $Nto infty$) of the optimal $s$-energy.
We investigate the minimal Riesz s-energy problem for positive measures on the d-dimensional unit sphere S^d in the presence of an external field induced by a point charge, and more generally by a line charge. The model interaction is that of Riesz p otentials |x-y|^(-s) with d-2 <= s < d. For a given axis-supported external field, the support and the density of the corresponding extremal measure on S^d is determined. The special case s = d-2 yields interesting phenomena, which we investigate in detail. A weak* asymptotic analysis is provided as s goes to (d-2)^+.
Let $A$ be a compact $d$-rectifiable set embedded in Euclidean space $RR^p$, $dle p$. For a given continuous distribution $sigma(x)$ with respect to $d$-dimensional Hausdorff measure on $A$, our earlier results provided a method for generating $N$-po int configurations on $A$ that have asymptotic distribution $sigma (x)$ as $Nto infty$; moreover such configurations are quasi-uniform in the sense that the ratio of the covering radius to the separation distance is bounded independent of $N$. The method is based upon minimizing the energy of $N$ particles constrained to $A$ interacting via a weighted power law potential $w(x,y)|x-y|^{-s}$, where $s>d$ is a fixed parameter and $w(x,y)=left(sigma(x)sigma(y)right)^{-({s}/{2d})}$. Here we show that one can generate points on $A$ with the above mentioned properties keeping in the energy sums only those pairs of points that are located at a distance of at most $r_N=C_N N^{-1/d}$ from each other, with $C_N$ being a positive sequence tending to infinity arbitrarily slowly. To do this we minimize the energy with respect to a varying truncated weight $v_N(x,y)=Phi(left|x-yright|/r_N)w(x,y)$, where $Phi:(0,infty)to [0,infty)$ is a bounded function with $Phi(t)=0$, $tgeq 1$, and $lim_{tto 0^+}Phi(t)=1$. This reduces, under appropriate assumptions, the complexity of generating $N$ point `low energy discretizations to order $N C_N^d$ computations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا