ﻻ يوجد ملخص باللغة العربية
The Timepix particle tracking telescope has been developed as part of the LHCb VELO Upgrade project, supported by the Medipix Collaboration and the AIDA framework. It is a primary piece of infrastructure for the VELO Upgrade project and is being used for the development of new sensors and front end technologies for several upcoming LHC trackers and vertexing systems. The telescope is designed around the dual capability of the Timepix ASICs to provide information about either the deposited charge or the timing information from tracks traversing the 14 x 14mm matrix of 55 x 55 um pixels. The rate of reconstructed tracks available is optimised by taking advantage of the shutter driven readout architecture of the Timepix chip, operated with existing readout systems. Results of tests conducted in the SPS North Area beam facility at CERN show that the telescope typically provides reconstructed track rates during the beam spills of between 3.5 and 7.5 kHz, depending on beam conditions. The tracks are time stamped with 1 ns resolution with an efficiency of above 98% and provide a pointing resolution at the centre of the telescope of 1.6 um . By dropping the time stamping requirement the rate can be increased to 15 kHz, at the expense of a small increase in background. The telescope infrastructure provides CO2 cooling and a flexible mechanical interface to the device under test, and has been used for a wide range of measurements during the 2011-2012 data taking campaigns.
A prototype particle tracking telescope has been constructed using Timepix and Medipix ASIC hybrid pixel assemblies as the six sensing planes. Each telescope plane consisted of one 1.4 cm2 assembly, providing a 256x256 array of 55 micron square pixel
CMOS Pixel Sensors tend to become relevant for a growing spectrum of charged particle detection instruments. This comes mainly from their high granularity and low material budget. However, several potential applications require a higher read-out spee
A fiber detector concept has been realized allowing to registrate particles within less than 100 nsec with a space point precision of about 0.1 mm at low occupancy. Three full size prototypes have been build by different producers and tested at a 3 G
A fiber detector concept is suggested allowing to registrate particles within less than 100 nsec with a space point precision of about 0.1 mm at low occuppancy. The fibers should be radiation hard for 1 Mrad/year. Corresponding prototypes have been b
AMS-02 is a high precision magnetic spectrometer for cosmic rays in the GeV to TeV energy range. Its tracker consists of nine layers of double-sided silicon microstrip sensors. They are used to locate the trajectories of cosmic rays in the 0.14 T fie