ترغب بنشر مسار تعليمي؟ اضغط هنا

Canonical representatives for divisor classes on tropical curves and the Matrix-Tree Theorem

109   0   0.0 ( 0 )
 نشر من قبل Farbod Shokrieh
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $Gamma$ be a compact tropical curve (or metric graph) of genus $g$. Using the theory of tropical theta functions, Mikhalkin and Zharkov proved that there is a canonical effective representative (called a break divisor) for each linear equivalence class of divisors of degree $g$ on $Gamma$. We present a new combinatorial proof of the fact that there is a unique break divisor in each equivalence class, establishing in the process an integral version of this result which is of independent interest. As an application, we provide a geometric proof of (a dual version of) Kirchhoffs celebrated Matrix-Tree Theorem. Indeed, we show that each weighted graph model $G$ for $Gamma$ gives rise to a canonical polyhedral decomposition of the $g$-dimensional real torus ${rm Pic}^g(Gamma)$ into parallelotopes $C_T$, one for each spanning tree $T$ of $G$, and the dual Kirchhoff theorem becomes the statement that the volume of ${rm Pic}^g(Gamma)$ is the sum of the volumes of the cells in the decomposition.



قيم البحث

اقرأ أيضاً

This is a foundational paper in tropical linear algebra, which is linear algebra over the min-plus semiring. We introduce and compare three natural definitions of the rank of a matrix, called the Barvinok rank, the Kapranov rank and the tropical rank . We demonstrate how these notions arise naturally in polyhedral and algebraic geometry, and we show that they differ in general. Realizability of matroids plays a crucial role here. Connections to optimization are also discussed.
We study a cylindrical Lagrangian cobordism group for Lagrangian torus fibres in symplectic manifolds which are the total spaces of smooth Lagrangian torus fibrations. We use ideas from family Floer theory and tropical geometry to obtain both obstruc tions to and constructions of cobordisms; in particular, we give examples of symplectic tori in which the cobordism group has no non-trivial cobordism relations between pairwise distinct fibres, and ones in which the degree zero fibre cobordism group is a divisible group. The results are independent of but motivated by mirror symmetry, and a relation to rational equivalence of 0-cycles on the mirror rigid analytic space.
We show that the number of combinatorial types of clusters of type $D_4$ modulo reflection-rotation is exactly equal to the number of combinatorial types of tropical planes in $mathbb{TP}^5$. This follows from a result of Sturmfels and Speyer which c lassifies these tropical planes into seven combinatorial classes using a detailed study of the tropical Grassmannian $operatorname{Gr}(3,6)$. Speyer and Williams show that the positive part $operatorname{Gr}^+(3,6)$ of this tropical Grassmannian is combinatorially equivalent to a small coarsening of the cluster fan of type $D_4$. We provide a structural bijection between the rays of $operatorname{Gr}^+(3,6)$ and the almost positive roots of type $D_4$ which makes this connection more precise. This bijection allows us to use the pseudotriangulations model of the cluster algebra of type $D_4$ to describe the equivalence of positive tropical planes in $mathbb{TP}^5$, giving a combinatorial model which characterizes the combinatorial types of tropical planes using automorphisms of pseudotriangulations of the octogon.
We describe recent work connecting combinatorics and tropical/non-Archimedean geometry to Diophantine geometry, particularly the uniformity conjectures for rational points on curves and for torsion packets of curves. The method of Chabauty--Coleman l ies at the heart of this connection, and we emphasize the clarification that tropical geometry affords throughout the theory of $p$-adic integration, especially to the comparison of analytic continuations of $p$-adic integrals and to the analysis of zeros of integrals on domains admitting monodromy.
We investigate geometric embeddings among several classes of stacky fans and algorithms, e.g., to compute their homology. Interesting cases arise from moduli spaces of tropical curves. Specifically, we study the embedding of the moduli of tropical ho neycomb curves into the moduli of all tropical $K_4$-curves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا