ﻻ يوجد ملخص باللغة العربية
This is a foundational paper in tropical linear algebra, which is linear algebra over the min-plus semiring. We introduce and compare three natural definitions of the rank of a matrix, called the Barvinok rank, the Kapranov rank and the tropical rank. We demonstrate how these notions arise naturally in polyhedral and algebraic geometry, and we show that they differ in general. Realizability of matroids plays a crucial role here. Connections to optimization are also discussed.
Let $Gamma$ be a compact tropical curve (or metric graph) of genus $g$. Using the theory of tropical theta functions, Mikhalkin and Zharkov proved that there is a canonical effective representative (called a break divisor) for each linear equivalence
We show that the number of combinatorial types of clusters of type $D_4$ modulo reflection-rotation is exactly equal to the number of combinatorial types of tropical planes in $mathbb{TP}^5$. This follows from a result of Sturmfels and Speyer which c
We investigate geometric embeddings among several classes of stacky fans and algorithms, e.g., to compute their homology. Interesting cases arise from moduli spaces of tropical curves. Specifically, we study the embedding of the moduli of tropical ho
We study the combinatorics of tropical hyperplane arrangements, and their relationship to (classical) hyperplane face monoids. We show that the refinement operation on the faces of a tropical hyperplane arrangement, introduced by Ardila and Develin i
We report on a recent implementation of patchworking and real tropical hypersurfaces in $texttt{polymake}$. As a new mathematical contribution we provide a census of Betti numbers of real tropical surfaces.