ﻻ يوجد ملخص باللغة العربية
Linear polarization measurements have been performed for $gamma$-rays in $^{91}$Ru produced with the $^{58}$Ni($^{36}$Ar, $2p1n$$gamma$)$^{91}$Ru reaction at a beam energy of 111 MeV. The EXOGAM Ge clover array has been used to measure the $gamma$-$gamma$ coincidences, $gamma$-ray linear polarization and $gamma$-ray angular distributions. The polarization sensitivity of the EXOGAM clover detectors acting as Compton polarimeters has been determined in the energy range 0.3$-$1.3 MeV. Several transitions have been observed for the first time. Measurements of linear polarization and angular distribution have led to the firm assignments of spin differences and parity of high-spin states in $^{91}$Ru. More specifically, calculations using a semi-empirical shell model were performed to understand the structures of the first and second (21/2$^{+}$) and (17/2$^{+}$) levels. The results are in good agreement with the experimental data, supporting the interpretation of the non yrast (21/2$^{+}$) and (17/2$^{+}$) states in terms of the $J_{rm max}$ and $J_{rm max}-2$ members of the seniority-three $ u(g_{9/2})^{-3}$ multiplet.
The $ E2/M1 $ multipole mixing ratio ($ delta $), reported by J. Gizon et al. Phys. Rev. C 17, 596 (1978), for 365 keV $ gamma $-transition in isotope[129]Ba is reevaluated and found altered. Experimentally determined angular distribution coefficient
The low-lying structures of the midshell $ u g_{9/2}$ Ni isotopes $^{72}$Ni and $^{74}$Ni have been investigated at the RIBF facility in RIKEN within the EURICA collaboration. Previously unobserved low-lying states were accessed for the first time fo
A {gamma}-ray linear polarization measurement has been performed to directly determine the parities for the levels in 146Gd nucleus. High-spin states in this nucleus were populated in a reaction 115In + 34S at 140 MeV incident energy. Linearly polari
The transition quadrupole moments, $Q_{t}$, of rotational bands in the neutron-rich, even-mass $^{102-108}$Mo and $^{108-112}$Ru nuclei were measured in the 8 to 16 $hbar $ spin range with the Doppler-shift attenuation method. The nuclei were populat
Recent high-precision mass measurements and shell model calculations~[Phys. Rev. Lett. {bf 108}, 212501 (2012)] have challenged a longstanding explanation for the requirement of a cubic isobaric multiplet mass equation for the lowest $A = 9$ isospin