ﻻ يوجد ملخص باللغة العربية
Recent high-precision mass measurements and shell model calculations~[Phys. Rev. Lett. {bf 108}, 212501 (2012)] have challenged a longstanding explanation for the requirement of a cubic isobaric multiplet mass equation for the lowest $A = 9$ isospin quartet. The conclusions relied upon the choice of the excitation energy for the second $T = 3/2$ state in $^9$B, which had two conflicting measurements prior to this work. We remeasured the energy of the state using the $^9{rm Be}(^3{rm He},t)$ reaction and significantly disagree with the most recent measurement. Our result supports the contention that continuum coupling in the most proton-rich member of the quartet is not the predominant reason for the large cubic term required for $A = 9$ nuclei.
The observed mass excesses of analog nuclear states with the same mass number $A$ and isospin $T$ can be used to test the isobaric multiplet mass equation (IMME), which has, in most cases, been validated to a high degree of precision. A recent measur
Mass measurements on radionuclides along the potassium isotope chain have been performed with the ISOLTRAP Penning trap mass spectrometer. For 35K T1/2=178ms) to 46K (T1/2=105s) relative mass uncertainties of 2x10-8 and better have been achieved. The
Masses of $^{52}$Co, $^{52}$Co$^m$, $^{52}$Fe, $^{52}$Fe$^m$, and $^{52}$Mn have been measured with the JYFLTRAP double Penning trap mass spectrometer. Of these, $^{52}$Co and $^{52}$Co$^m$ have been experimentally determined for the first time and f
We study the a, b and c coefficients of the isobaric-multiplet mass equation using a macroscopic-microscopic approach developed by P. Moeller and his collaborators in ADNDT 59, 185 (1995) and ADNDT 109-110, 1 (2016). We show that already the macrosco
Using the Penning trap mass spectrometer TITAN, we performed the first direct mass measurements of 20,21Mg, isotopes that are the most proton-rich members of the A = 20 and A = 21 isospin multiplets. These measurements were possible through the use o