ترغب بنشر مسار تعليمي؟ اضغط هنا

Continuous-wave coherent imaging with terahertz quantum cascade lasers using electro-optic harmonic sampling

117   0   0.0 ( 0 )
 نشر من قبل Giorgio Santarelli
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Marco Ravaro




اسأل ChatGPT حول البحث

We demonstrate a coherent imaging system based on a terahertz (THz) frequency quantum cascade laser (QCL) phase-locked to a near-infrared fs-laser comb. The phase locking enables coherent electro-optic sampling of the continuous-wave radiation emitted by the QCL through the generation of a heterodyne beat-note signal. We use this beat-note signal to demonstrate raster scan coherent imaging using a QCL emitting at 2.5 THz. At this frequency the detection noise floor of our system is of 3 pW/Hz and the long-term phase stability is <3 degrees/h, limited by the mechanical stability of the apparatus.



قيم البحث

اقرأ أيضاً

We phase-coherently measure the frequency of continuous-wave (CW) laser light by use of optical-phase modulation and f-2f nonlinear interferometry. Periodic electro-optic modulation (EOM) transforms the CW laser into a continuous train of picosecond optical pulses. Subsequent nonlinear-fiber broadening of this EOM frequency comb produces a supercontinuum with 160 THz of bandwidth. A critical intermediate step is optical filtering of the EOM comb to reduce electronic-noise-induced decoherence of the supercontinuum. Applying f-2f self-referencing with the supercontinuum yields the carrier-envelope offset frequency of the EOM comb, which is precisely the difference of the CW laser frequency and an exact integer multiple of the EOM pulse repetition rate. Here we demonstrate absolute optical frequency metrology and synthesis applications of the self-referenced CW laser with <5E-14 fractional accuracy and stability.
Coherent continuous wave (CW) terahertz spectroscopy is an extremely valuable technique that allows for the interrogation of systems that exhibit narrow resonances in the terahertz (THz) frequency range, such as high-quality (high-Q) THz whispering-g allery mode resonators. Unfortunately, common implementations are dramatically impaired by deficiencies in the used data analysis schemes. Here, we show that the physics of the problem presents an elegant solution whose full potential has remained overlooked until now. We argue that, thanks to the causality of physical systems, Hilbert transformation can be used to analyze the frequency response of linear systems with arbitrarily narrow resonance features in coherent CW THz spectroscopy. In particular, by establishing that signals encountered in typical experiments are closely related to analytic signals, we demonstrate that Hilbert transformation is applicable even when the envelope varies rapidly compared to the oscillation period.
We have developed terahertz frequency quantum cascade lasers that exploit a double-periodicity distributed feedback grating to control the emission frequency and the output beam direction independently. The spatial refractive index modulation of the gratings necessary to provide optical feedback at a fixed frequency and, simultaneously, a far-field emission pattern centered at controlled angles, was designed through use of an appropriate wavevector scattering model. Single mode THz emission at angles tuned by design between 0{deg} and 50{deg} was realized, leading to an original phase-matching approach, lithographically independent, for highly collimated THz QCLs.
Terahertz quantum cascade laser sources based on intra-cavity difference frequency generation from mid-IR devices are an important asset for applications in rotational molecular spectroscopy and sensing, beingthe only electrically pumped device able to operate in the 0.6-6 THz range without the need of bulky andexpensive liquid helium cooling. Here we present comb operation obtained by intra-cavity mixing of adistributed feedback laser at {lambda} = 6.5 {mu}m and a Fabry-Perot device at around {lambda} = 6.9 {mu}m. The resultingultra-broadband THz emission extends from 1.8 to 3.3 THz, with a total output power of 8 {mu}W at 78K.The THz emission has been characterized by multi-heterodyne detection with a primary frequencystandard referenced THz comb, obtained by optical rectification of near infrared pulses. The down-converted beatnotes, simultaneously acquired, confirm an equally spaced THz emission down to 1 MHzaccuracy. In the next future this setup can be used for Fourier transform based evaluation of the phaserelation among the emitted THz modes, paving the way to room-temperature, compact and field-deployable metrological grade THz frequency combs.
We demonstrate a two-photon interference experiment for phase coherent biphoton frequency combs (BFCs), created through spectral amplitude filtering of biphotons with a continuous broadband spectrum. By using an electro-optic phase modulator, we proj ect the BFC lines into sidebands that overlap in frequency. The resulting high-visibility interference patterns provide an approach to verify frequency-bin entanglement even with slow single-photon detectors; we show interference patterns with visibilities that surpass the classical threshold for qubit and qutrit states. Additionally, we show that with entangled qutrits, two-photon interference occurs even with projections onto different final frequency states. Finally, we show the versatility of this scheme for weak-light measurements by performing a series of two-dimensional experiments at different signal-idler frequency offsets to measure the dispersion of a single-mode fiber.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا