ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent continuous wave terahertz spectroscopy using Hilbert transformation

88   0   0.0 ( 0 )
 نشر من قبل Dominik Walter Vogt
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Coherent continuous wave (CW) terahertz spectroscopy is an extremely valuable technique that allows for the interrogation of systems that exhibit narrow resonances in the terahertz (THz) frequency range, such as high-quality (high-Q) THz whispering-gallery mode resonators. Unfortunately, common implementations are dramatically impaired by deficiencies in the used data analysis schemes. Here, we show that the physics of the problem presents an elegant solution whose full potential has remained overlooked until now. We argue that, thanks to the causality of physical systems, Hilbert transformation can be used to analyze the frequency response of linear systems with arbitrarily narrow resonance features in coherent CW THz spectroscopy. In particular, by establishing that signals encountered in typical experiments are closely related to analytic signals, we demonstrate that Hilbert transformation is applicable even when the envelope varies rapidly compared to the oscillation period.



قيم البحث

اقرأ أيضاً

132 - Marco Ravaro 2013
We demonstrate a coherent imaging system based on a terahertz (THz) frequency quantum cascade laser (QCL) phase-locked to a near-infrared fs-laser comb. The phase locking enables coherent electro-optic sampling of the continuous-wave radiation emitte d by the QCL through the generation of a heterodyne beat-note signal. We use this beat-note signal to demonstrate raster scan coherent imaging using a QCL emitting at 2.5 THz. At this frequency the detection noise floor of our system is of 3 pW/Hz and the long-term phase stability is <3 degrees/h, limited by the mechanical stability of the apparatus.
Stimulated Raman spectroscopy has become a powerful tool to study the spatiodynamics of molecular bonds with high sensitivity, resolution and speed. However, sensitivity and speed of state-of-the-art stimulated Raman spectroscopy are currently limite d by the shot-noise of the light beam probing the Raman process. Here, we demonstrate an enhancement of the sensitivity of continuous-wave stimulated Raman spectroscopy by reducing the quantum noise of the probing light below the shot-noise limit by means of amplitude squeezed states of light. Probing polymer samples with Raman shifts around 2950 $cm^{-1}$ with squeezed states, we demonstrate a quantum-enhancement of the stimulated Raman signal-to-noise ratio (SNR) of 3.60 dB relative to the shot-noise limited SNR. Our proof-of-concept demonstration of quantum-enhanced Raman spectroscopy paves the way for a new generation of Raman microscopes, where weak Raman transitions can be imaged without the use of markers or an increase in the total optical power.
The Terahertz or millimeter wave frequency band (300 GHz - 3 THz) is spectrally located between microwaves and infrared light and has attracted significant interest for applications in broadband wireless communications, space-borne radiometers for Ea rth remote sensing, astrophysics, and imaging. In particular optically generated THz waves are of high interest for low-noise signal generation. In particular optically generated THz waves are of high interest for low-noise signal generation. Here, we propose and demonstrate stabilized terahertz wave generation using a microresonator-based frequency comb (microcomb). A unitravelling-carrier photodiode (UTC-PD) converts low-noise optical soliton pulses from the microcomb to a terahertz wave at the solitons repetition rate (331 GHz). With a free-running microcomb, the Allan deviation of the Terahertz signal is 4.5*10^-9 at 1 s measurement time with a phase noise of -72 dBc/Hz (-118 dBc/Hz) at 10 kHz (10 MHz) offset frequency. By locking the repetition rate to an in-house hydrogen maser, in-loop fractional frequency stabilities of 9.6*10^-15 and 1.9*10^-17 are obtained at averaging times of 1 s and 2000 s respectively, limited by the maser reference signal. Moreover, the terahertz signal is successfully used to perform a proof-of-principle demonstration of terahertz imaging of peanuts. Combining the monolithically integrated UTC-PD with an on-chip microcomb, the demonstrated technique could provide a route towards highly stable continuous terahertz wave generation in chip-scale packages for out-of-the-lab applications. In particular, such systems would be useful as compact tools for high-capacity wireless communication, spectroscopy, imaging, remote sensing, and astrophysical applications.
Frequency combs based on terahertz quantum cascade lasers feature broadband coverage and high output powers in a compact package, making them an attractive option for broadband spectroscopy. Here, we demonstrate the first multi-heterodyne spectroscop y using two terahertz quantum cascade laser combs. With just 100 $mu$s of integration time, we achieve peak signal-to-noise ratios exceeding 60 dB and a spectral coverage greater than 250 GHz centered at 2.8 THz. Even with room-temperature detectors we are able to achieve peak signal-to-noise ratios of 50 dB, and as a proof-of-principle we use these combs to measure the broadband transmission spectrum of etalon samples. Finally, we show that with proper signal processing, it is possible to extend the multi-heterodyne spectroscopy to quantum cascade laser combs operating in pulsed mode, greatly expanding the range of quantum cascade lasers that could be suitable for these techniques.
In a continuous-wave terahertz system based on photomixing, the measured amplitude of the terahertz signal shows an uncertainty due to drifts of the responsivities of the photomixers and of the optical power illuminating the photomixers. We report on a simple method to substantially reduce this uncertainty. By normalizing the amplitude to the DC photocurrents in both the transmitter and receiver photomixers, we achieve a significant increase of the stability. If, e.g., the optical power of one laser is reduced by 10%, the normalized signal is expected to change by only 0.3%, i.e., less than the typical uncertainty due to short-term fluctuations. This stabilization can be particularly valuable for terahertz applications in non-ideal environmental conditions outside of a temperature-stabilized laboratory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا