ﻻ يوجد ملخص باللغة العربية
We investigate thermalization dynamics of a driven dipolar many-body quantum system through the stability of discrete time crystalline order. Using periodic driving of electronic spin impurities in diamond, we realize different types of interactions between spins and demonstrate experimentally that the interplay of disorder, driving and interactions leads to several qualitatively distinct regimes of thermalization. For short driving periods, the observed dynamics are well described by an effective Hamiltonian which sensitively depends on interaction details. For long driving periods, the system becomes susceptible to energy exchange with the driving field and eventually enters a universal thermalizing regime, where the dynamics can be described by interaction-induced dephasing of individual spins. Our analysis reveals important differences between thermalization of long-range Ising and other dipolar spin models.
Understanding quantum dynamics away from equilibrium is an outstanding challenge in the modern physical sciences. It is well known that out-of-equilibrium systems can display a rich array of phenomena, ranging from self-organized synchronization to d
Conventional wisdom holds that macroscopic classical phenomena naturally emerge from microscopic quantum laws. However, despite this mantra, building direct connections between these two descriptions has remained an enduring scientific challenge. In
The discrete time crystal (DTC) is a recently discovered phase of matter that spontaneously breaks time-translation symmetry. Disorder-induced many-body-localization is required to stabilize a DTC to arbitrary times, yet an experimental investigation
Symmetries are well known to have had a profound role in our understanding of nature and are a critical design concept for the realization of advanced technologies. In fact, many symmetry-broken states associated with different phases of matter appea
A quantum phase of matter can be understood from the symmetry of the systems Hamiltonian. The system symmetry along the time axis has been proposed to show a new phase of matter referred as discrete-time crystals (DTCs). A DTC is a quantum phase of m