ﻻ يوجد ملخص باللغة العربية
Consider a set represented by an inequality. An interesting phenomenon which occurs in various settings in mathematics is that the interior of this set is the subset where strict inequality holds, the boundary is the subset where equality holds, and the closure of the set is the closure of its interior. This paper discusses this phenomenon assuming the set is a Voronoi cell induced by given sites (subsets), a geometric object which appears in many fields of science and technology and has diverse applications. Simple counterexamples show that the discussed phenomenon does not hold in general, but it is established in a wide class of cases. More precisely, the setting is a (possibly infinite dimensional) uniformly convex normed space with arbitrary positively separated sites. An important ingredient in the proof is a strong version of the triangle inequality due to Clarkson (1936), an interesting inequality which has been almost totally forgotten.
Let $A$ be a positive semidefinite $mtimes m$ block matrix with each block $n$-square, then the following determinantal inequality for partial traces holds [ (mathrm{tr} A)^{mn} - det(mathrm{tr}_2 A)^n ge bigl| det A - det(mathrm{tr}_1 A)^m bigr|, ]
Let $A$ be an $mtimes m$ positive semidefinite block matrix with each block being $n$-square. We write $mathrm{tr}_1$ and $mathrm{tr}_2$ for the first and second partial trace, respectively. In this note, we prove the following inequality [ (mathrm{t
We revisit and comment on the Harnack type determinantal inequality for contractive matrices obtained by Tung in the nineteen sixtieth and give an extension of the inequality involving multiple positive semidefinite matrices.
We refine a result of Matei and Meyer on stable sampling and stable interpolation for simple model sets. Our setting is model sets in locally compact abelian groups and Fourier analysis of unbounded complex Radon measures as developed by Argabright a
This is an expository introduction to simplicial sets and simplicial homotopy theory with particular focus on relating the combinatorial aspects of the theory to their geometric/topological origins. It is intended to be accessible to students familia