ﻻ يوجد ملخص باللغة العربية
We propose a quantum method to judge whether two spatially separated clocks have been synchronized within a specific accuracy $sigma$. If the measurement result of the experiment is obviously a nonzero value, the time difference between two clocks is smaller than $sigma$; otherwise the difference is beyond $sigma$. On sharing the 2$N$-qubit bipartite maximally entangled state in this scheme, the accuracy of judgement can be enhanced to $sigmasim{pi}/{(omega(N+1))}$. This criterion is consistent with Heisenberg scaling that can be considered as beating standard quantum limit, moreover, the unbiased estimation condition is not necessary.
We propose a quantum fitting scheme to estimate the magnetic field gradient with $N$-atom spins preparing in W state, which attains the Heisenberg-scaling accuracy. Our scheme combines the quantum multi-parameter estimation and the least square linea
The problem of constructing a necessary and sufficient condition for establishing the separability of continuous variable systems is revisited. Simon [R. Simon, Phys. Rev. Lett. 84, 2726 (2000)] pointed out that such a criterion may be constructed by
Exchanging light pulses to perform accurate space-time positioning is a paradigmatic issue of physics. It is ultimately limited by the quantum nature of light, which introduces fluctuations in the optical measurements and leads to the so-called Stand
We have constructed an optical clock with a fractional frequency inaccuracy of 8.6e-18, based on quantum logic spectroscopy of an Al+ ion. A simultaneously trapped Mg+ ion serves to sympathetically laser-cool the Al+ ion and detect its quantum state.
It has recently been reported [textit{PNAS} textbf{114}, 2303 (2017)] that, under an operational definition of time, quantum clocks would get entangled through gravitational effects. Here we study an alternative scenario: the clocks have different ma