ﻻ يوجد ملخص باللغة العربية
The problem of constructing a necessary and sufficient condition for establishing the separability of continuous variable systems is revisited. Simon [R. Simon, Phys. Rev. Lett. 84, 2726 (2000)] pointed out that such a criterion may be constructed by drawing a parallel between the Peres partial transpose criterion for finite dimensional systems and partial time reversal transformation for continuous variable systems. We generalize the partial time reversal transformation to a partial scaling transformation and re-examine the problem using a tomographic description of the continuous variable quantum system. The limits of applicability of the entanglement criteria obtained from partial scaling and partial time reversal are explored.
A decomposition form is introduced in this report to establish a criterion for the bi-partite separability of Bell diagonal states. A such criterion takes a quadratic form of the coefficients of a given Bell diagonal states and can be derived via a s
A conceptually simpler proof of the separability criterion for two-qubit systems, which is referred to as Hefei inequality in literature, is presented. This inequality gives a necessary and sufficient separability criterion for any mixed two-qubit sy
We introduce a weak form of the realignment separability criterion which is particularly suited to detect continuous-variable entanglement and is physically implementable (it requires linear optics transformations and homodyne detection). Moreover, w
We propose a quantum method to judge whether two spatially separated clocks have been synchronized within a specific accuracy $sigma$. If the measurement result of the experiment is obviously a nonzero value, the time difference between two clocks is
Currently available separability criteria for continuous-variable states are generally based on the covariance matrix of quadrature operators. The well-known separability criterion of Duan et al. [Phys. Rev. Lett. 84, 2722 (2000)] and Simon [Phys. Re