ﻻ يوجد ملخص باللغة العربية
The emerging field of optogenetics allows for optical activation or inhibition of neurons and other tissue in the nervous system. In 2005 optogenetic proteins were expressed in the nematode C. elegans for the first time. Since then, C. elegans has served as a powerful platform upon which to conduct optogenetic investigations of synaptic function, circuit dynamics and the neuronal basis of behavior. The C. elegans nervous system, consisting of 302 neurons, whose connectivity and morphology has been mapped completely, drives a rich repertoire of behaviors that are quantifiable by video microscopy. This model organisms compact nervous system, quantifiable behavior, genetic tractability and optical accessibility make it especially amenable to optogenetic interrogation. Channelrhodopsin-2 (ChR2), halorhodopsin (NpHR/Halo) and other common optogenetic proteins have all been expressed in C. elegans. Moreover recent advances leveraging molecular genetics and patterned light illumination have now made it possible to target photoactivation and inhibition to single cells and to do so in worms as they behave freely. Here we describe techniques and methods for optogenetic manipulation in C. elegans. We review recent work using optogenetics and C. elegans for neuroscience investigations at the level of synapses, circuits and behavior.
We present a high-throughput optogenetic illumination system capable of simultaneous closed-loop light delivery to specified targets in populations of moving Caenorhabditis elegans. The instrument addresses three technical challenges: it delivers tar
A quantitative understanding of how sensory signals are transformed into motor outputs places useful constraints on brain function and helps reveal the brains underlying computations. We investigate how the nematode C. elegans responds to time-varyin
The roundworm C. elegans exhibits robust escape behavior in response to rapidly rising temperature. The behavior lasts for a few seconds, shows history dependence, involves both sensory and motor systems, and is too complicated to model mechanistical
Given the inner complexity of the human nervous system, insight into the dynamics of brain activity can be gained from understanding smaller and simpler organisms, such as the nematode C. Elegans. The behavioural and structural biology of these organ
The ability to acquire large-scale recordings of neuronal activity in awake and unrestrained animals poses a major challenge for studying neural coding of animal behavior. We present a new instrument capable of recording intracellular calcium transie