ﻻ يوجد ملخص باللغة العربية
The ability to acquire large-scale recordings of neuronal activity in awake and unrestrained animals poses a major challenge for studying neural coding of animal behavior. We present a new instrument capable of recording intracellular calcium transients from every neuron in the head of a freely behaving C. elegans with cellular resolution while simultaneously recording the animals position, posture and locomotion. We employ spinning-disk confocal microscopy to capture 3D volumetric fluorescent images of neurons expressing the calcium indicator GCaMP6s at 5 head-volumes per second. Two cameras simultaneously monitor the animals position and orientation. Custom software tracks the 3D position of the animals head in real-time and adjusts a motorized stage to keep it within the field of view as the animal roams freely. We observe calcium transients from 78 neurons and correlate this activity with the animals behavior. Across worms, multiple neurons show significant correlations with modes of behavior corresponding to forward, backward, and turning locomotion. By comparing the 3D positions of these neurons with a known atlas, our results are consistent with previous single-neuron studies and demonstrate the existence of new candidate neurons for behavioral circuits.
A quantitative understanding of how sensory signals are transformed into motor outputs places useful constraints on brain function and helps reveal the brains underlying computations. We investigate how the nematode C. elegans responds to time-varyin
We present a high-throughput optogenetic illumination system capable of simultaneous closed-loop light delivery to specified targets in populations of moving Caenorhabditis elegans. The instrument addresses three technical challenges: it delivers tar
We describe a large-scale functional brain model that includes detailed, conductance-based, compartmental models of individual neurons. We call the model BioSpaun, to indicate the increased biological plausibility of these neurons, and because it is
By focusing on melancholic features with biological homogeneity, this study aimed to identify a small number of critical functional connections (FCs) that were specific only to the melancholic type of MDD. On the resting-state fMRI data, classifiers
Reduced motor control is one of the most frequent features associated with aging and disease. Nonlinear and fractal analyses have proved to be useful in investigating human physiological alterations with age and disease. Similar findings have not bee