ترغب بنشر مسار تعليمي؟ اضغط هنا

Chandra and ALMA observations of the nuclear activity in two strongly lensed star forming galaxies

81   0   0.0 ( 0 )
 نشر من قبل Marcella Massardi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nuclear activity and star formation play relevant roles in the early stages of galaxy formation. We aim at identifying them in high redshift galaxies by exploiting high-resolution and sensitivity X-ray and mm data to confirm their presence and relative role in contributing to the galaxy SEDs and energy budget. We present the data, model and analysis in the X-ray and mm bands for two strongly lensed galaxies, SDP.9 and SDP.11, selected in the Herschel-ATLAS catalogues as having an excess emission in the mid-IR regime at z>1.5, suggesting nuclear activity in the early stages of galaxy formation. We observed both of them in X-ray with Chandra and analyzed the high-resolution mm data available in the ALMA Science Archive for SDP9, and, by combining the information available, we reconstructed the source morphology. Both the targets were detected in the X-ray, strongly indicating the presence of highly obscured nuclear activity. High resolution ALMA observations for SDP9 in continuum and CO(6-5) spectral line allowed us to estimate the lensed galaxy redshift to a better accuracy than pre-ALMA estimates and to model the emission of the optical, mm, and X-ray band emission for this galaxy. We demonstrated that the X-ray emission is generated in the nuclear environment and it strongly support the presence of nuclear activity in this object. Hence, we identified weak nuclear activity associated with high-z galaxies with large star formation rates, useful to extend the investigation of the relationship between star formation and nuclear activity to two intrinsically less luminous, high-z star forming galaxies than was possible so far. Given our results only for two objects, they solely cannot constrain the evolutionary models, but provide us with interesting hints and set an observational path towards addressing the role of star formation and nuclear activity in forming galaxies.



قيم البحث

اقرأ أيضاً

We present Atacama Large Millimeter/submillimeter Array (ALMA) 860 micrometer imaging of four high-redshift (z=2.8-5.7) dusty sources that were detected using the South Pole Telescope (SPT) at 1.4 mm and are not seen in existing radio to far-infrared catalogs. At 1.5 arcsec resolution, the ALMA data reveal multiple images of each submillimeter source, separated by 1-3 arcsec, consistent with strong lensing by intervening galaxies visible in near-IR imaging of these sources. We describe a gravitational lens modeling procedure that operates on the measured visibilities and incorporates self-calibration-like antenna phase corrections as part of the model optimization, which we use to interpret the source structure. Lens models indicate that SPT0346-52, located at z=5.7, is one of the most luminous and intensely star-forming sources in the universe with a lensing corrected FIR luminosity of 3.7 X 10^13 L_sun and star formation surface density of 4200 M_sun yr^-1 kpc^-2. We find magnification factors of 5 to 22, with lens Einstein radii of 1.1-2.0 arcsec and Einstein enclosed masses of 1.6-7.2x10^11 M_sun. These observations confirm the lensing origin of these objects, allow us to measure the their intrinsic sizes and luminosities, and demonstrate the important role that ALMA will play in the interpretation of lensed submillimeter sources.
77 - S. Dye , C. Furlanetto , L. Dunne 2017
We have modelled high resolution ALMA imaging of six strong gravitationally lensed galaxies detected by the Herschel Space Observatory. Our modelling recovers mass properties of the lensing galaxies and, by determining magnification factors, intrinsi c properties of the lensed sub-millimetre sources. We find that the lensed galaxies all have high ratios of star formation rate to dust mass, consistent with or higher than the mean ratio for high redshift sub-millimetre galaxies and low redshift ultra-luminous infra-red galaxies. Source reconstruction reveals that most galaxies exhibit disturbed morphologies. Both the cleaned image plane data and the directly observed interferometric visibilities have been modelled, enabling comparison of both approaches. In the majority of cases, the recovered lens models are consistent between methods, all six having mass density profiles that are close to isothermal. However, one system with poor signal to noise shows mildly significant differences.
We present spatially-resolved imaging obtained with the Australia Telescope Compact Array (ATCA) of three CO lines in two high-redshift gravitationally lensed dusty star-forming galaxies, discovered by the South Pole Telescope. Strong lensing allows us to probe the structure and dynamics of the molecular gas in these two objects, at z=2.78 and z=5.66, with effective source-plane resolution of less than 1kpc. We model the lensed emission from multiple CO transitions and the dust continuum in a consistent manner, finding that the cold molecular gas as traced by low-J CO always has a larger half-light radius than the 870um dust continuum emission. This size difference leads to up to 50% differences in the magnification factor for the cold gas compared to dust. In the z=2.78 galaxy, these CO observations confirm that the background source is undergoing a major merger, while the velocity field of the other source is more complex. We use the ATCA CO observations and comparable resolution Atacama Large Millimeter/submillimeter Array dust continuum imaging of the same objects to constrain the CO-H_2 conversion factor with three different procedures, finding good agreement between the methods and values consistent with those found for rapidly star-forming systems. We discuss these galaxies in the context of the star formation - gas mass surface density relation, noting that the change in emitting area with observed CO transition must be accounted for when comparing high-redshift galaxies to their lower redshift counterparts.
Star formation occurs on physical scales corresponding to individual star forming regions, typically of order ~100 parsecs in size, but current observational facilities cannot resolve these scales within field galaxies beyond the local universe. Howe ver, the magnification from strong gravitational lensing allows us to measure the properties of these discrete star forming regions within galaxies in the distant universe. New results from multi-wavelength spectroscopic studies of a sample of extremely bright, highly magnified lensed galaxies are revealing the complexity of star formation on sub-galaxy scales during the era of peak star formation in the universe. We find a wide range of properties in the rest-frame UV spectra of individual galaxies, as well as in spectra that originate from different star forming regions within the same galaxy. Large variations in the strengths and velocity structure of Lyman-alpha and strong P Cygni lines such as C IV, and MgII provide new insights into the astrophysical relationships between extremely massive stars, the elemental abundances and physical properties of the nebular gas those stars ionize, and the galactic-scale outflows they power.
159 - D. Schaerer , F. Boone , T. Jones 2015
Our objectives are to determine the properties of the interstellar medium (ISM) and of star-formation in typical star-forming galaxies at high redshift. Following up on our previous multi-wavelength observations with HST, Spitzer, Herschel, and the P lateau de Bure Interferometer (PdBI), we have studied a strongly lensed z=2.013 galaxy, the arc behind the galaxy cluster MACS J0451+0006, with ALMA to measure the [CII] 158 micron emission line, one of the main coolants of the ISM. [CII] emission from the southern part of this galaxy is detected at 10 $sigma$. Taking into account strong gravitational lensing, which provides a magnification of $mu=49$, the intrinsic lensing-corrected [CII]158 micron luminosity is $L(CII)=1.2 times 10^8 L_odot$. The observed ratio of [CII]-to-IR emission, $L(CII)/L(FIR) approx (1.2-2.4) times 10^{-3}$, is found to be similar to that in nearby galaxies. The same also holds for the observed ratio $L(CII)/L(CO)=2.3 times 10^3$, which is comparable to that of star-forming galaxies and active galaxy nuclei (AGN) at low redshift. We utilize strong gravitational lensing to extend diagnostic studies of the cold ISM to an order of magnitude lower luminosity ($L(IR) sim (1.1-1.3) times 10^{11} L_odot$) and SFR than previous work at high redshift. While larger samples are needed, our results provide evidence that the cold ISM of typical high redshift galaxies has physical characteristics similar to normal star forming galaxies in the local Universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا